sits_combine_predictions function

Estimate ensemble prediction based on list of probs cubes

Estimate ensemble prediction based on list of probs cubes

Calculate an ensemble predictor based a list of probability cubes. The function combines the output of two or more classifier to derive a value which is based on weights assigned to each model. The supported types of ensemble predictors are 'average' and 'uncertainty'.

sits_combine_predictions(cubes, type = "average", ...) ## S3 method for class 'average' sits_combine_predictions( cubes, type = "average", ..., weights = NULL, memsize = 8L, multicores = 2L, output_dir, version = "v1" ) ## S3 method for class 'uncertainty' sits_combine_predictions( cubes, type = "uncertainty", ..., uncert_cubes, memsize = 8L, multicores = 2L, output_dir, version = "v1" ) ## Default S3 method: sits_combine_predictions(cubes, type, ...)

Arguments

  • cubes: List of probability data cubes (class "probs_cube")
  • type: Method to measure uncertainty. One of "average" or "uncertainty"
  • ...: Parameters for specific functions.
  • weights: Weights for averaging (numeric vector).
  • memsize: Memory available for classification in GB (integer, min = 1, max = 16384).
  • multicores: Number of cores to be used for classification (integer, min = 1, max = 2048).
  • output_dir: Valid directory for output file. (character vector of length 1).
  • version: Version of the output (character vector of length 1).
  • uncert_cubes: Uncertainty cubes to be used as local weights when type = "uncertainty" is selected (list of tibbles with class "uncertainty_cube")

Returns

A combined probability cube (tibble of class "probs_cube").

Examples

if (sits_run_examples()) { # create a data cube from local files data_dir <- system.file("extdata/raster/mod13q1", package = "sits") cube <- sits_cube( source = "BDC", collection = "MOD13Q1-6.1", data_dir = data_dir ) # create a random forest model rfor_model <- sits_train(samples_modis_ndvi, sits_rfor()) # classify a data cube using rfor model probs_rfor_cube <- sits_classify( data = cube, ml_model = rfor_model, output_dir = tempdir(), version = "rfor" ) # create an SVM model svm_model <- sits_train(samples_modis_ndvi, sits_svm()) # classify a data cube using SVM model probs_svm_cube <- sits_classify( data = cube, ml_model = svm_model, output_dir = tempdir(), version = "svm" ) # create a list of predictions to be combined pred_cubes <- list(probs_rfor_cube, probs_svm_cube) # combine predictions comb_probs_cube <- sits_combine_predictions( pred_cubes, output_dir = tempdir() ) # plot the resulting combined prediction cube plot(comb_probs_cube) }

Author(s)

Gilberto Camara, gilberto.camara@inpe.br

Rolf Simoes, rolf.simoes@inpe.br