skedastic2.0.3 package

Handling Heteroskedasticity in the Linear Regression Model

avm.vcov

Estimate Covariance Matrix of Ordinary Least Squares Estimators Using ...

bamset

Ramsey's BAMSET Test for Heteroskedasticity in a Linear Regression Mod...

bickel

Bickel's Test for Heteroskedasticity in a Linear Regression Model

blus

Compute Best Linear Unbiased Scalar-Covariance (BLUS) residuals from a...

bootlm

Nonparametric Bootstrapping of Heteroskedastic Linear Regression Model...

breusch_pagan

Breusch-Pagan Test for Heteroskedasticity in a Linear Regression Model

carapeto_holt

Carapeto-Holt Test for Heteroskedasticity in a Linear Regression Model

cook_weisberg

Cook-Weisberg Score Test for Heteroskedasticity in a Linear Regression...

countpeaks

Count peaks in a data sequence

yuce

Yüce's Test for Heteroskedasticity in a Linear Regression Model

zhou_etal

Zhou, Song, and Thompson's Test for Heteroskedasticity in a Linear Reg...

rackauskas_zuokas

Rackauskas-Zuokas Test for Heteroskedasticity in a Linear Regression M...

simonoff_tsai

Simonoff-Tsai Tests for Heteroskedasticity in a Linear Regression Mode...

szroeter

Szroeter's Test for Heteroskedasticity in a Linear Regression Model

twosidedpval

Computation of Conditional Two-Sided pp-Values

verbyla

Verbyla's Test for Heteroskedasticity in a Linear Regression Model

white

White's Test for Heteroskedasticity in a Linear Regression Model

wilcox_keselman

Wilcox and Keselman's Test for Heteroskedasticity in a Linear Regressi...

alvm.fit

Auxiliary Linear Variance Model

anlvm.fit

Auxiliary Nonlinear Variance Model

anscombe

Anscombe's Test for Heteroskedasticity in a Linear Regression Model

avm.ci

Bootstrap Confidence Intervals for Linear Regression Error Variances

avm.fwls

Apply Feasible Weighted Least Squares to a Linear Regression Model

dDtrend

Probability mass function of nonparametric trend statistic DD

diblasi_bowman

Diblasi and Bowman's Test for Heteroskedasticity in a Linear Regressio...

dpeak

Probability mass function of number of peaks in an i.i.d. random seque...

dufour_etal

Dufour et al.'s Monte Carlo Test for Heteroskedasticity in a Linear Re...

evans_king

Evans-King Tests for Heteroskedasticity in a Linear Regression Model

glejser

Glejser Test for Heteroskedasticity in a Linear Regression Model

godfrey_orme

Godfrey and Orme's Nonparametric Bootstrap Test for Heteroskedasticity...

goldfeld_quandt

Goldfeld-Quandt Tests for Heteroskedasticity in a Linear Regression Mo...

GSS

Golden Section Search for Minimising Univariate Function over a Closed...

harrison_mccabe

Harrison and McCabe's Test for Heteroskedasticity in a Linear Regressi...

harvey

Harvey Test for Heteroskedasticity in a Linear Regression Model

hccme

Heteroskedasticity-Consistent Covariance Matrix Estimators for Linear ...

hetplot

Graphical Methods for Detecting Heteroskedasticity in a Linear Regress...

honda

Honda's Test for Heteroskedasticity in a Linear Regression Model

horn

Horn's Test for Heteroskedasticity in a Linear Regression Model

li_yao

Li-Yao ALRT and CVT Tests for Heteroskedasticity in a Linear Regressio...

pDtrend

Cumulative distribution function of nonparametric trend statistic DD

ppeak

Cumulative distribution function of number of peaks in an i.i.d. rando...

pRQF

Probabilities for a Ratio of Quadratic Forms in a Normal Random Vector

Implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) <doi:10.1007/978-0-387-21606-5>. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) <doi:10.1080/00031305.2015.1089789>. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022) <https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm>. A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3). There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) <https://projecteuclid.org/euclid.bsmsp/1200512155>, Ramsey's (1969) BAMSET Test <doi:10.1111/j.2517-6161.1969.tb00796.x>, the tests of Bickel (1978) <doi:10.1214/aos/1176344124>, Breusch and Pagan (1979) <doi:10.2307/1911963> with and without the modification proposed by Koenker (1981) <doi:10.1016/0304-4076(81)90062-2>, Carapeto and Holt (2003) <doi:10.1080/0266476022000018475>, Cook and Weisberg (1983) <doi:10.1093/biomet/70.1.1> (including their graphical methods), Diblasi and Bowman (1997) <doi:10.1016/S0167-7152(96)00115-0>, Dufour, Khalaf, Bernard, and Genest (2004) <doi:10.1016/j.jeconom.2003.10.024>, Evans and King (1985) <doi:10.1016/0304-4076(85)90085-5> and Evans and King (1988) <doi:10.1016/0304-4076(88)90006-1>, Glejser (1969) <doi:10.1080/01621459.1969.10500976> as formulated by Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) <doi:10.1080/07474939908800438>, Goldfeld and Quandt (1965) <doi:10.1080/01621459.1965.10480811>, Harrison and McCabe (1979) <doi:10.1080/01621459.1979.10482544>, Harvey (1976) <doi:10.2307/1913974>, Honda (1989) <doi:10.1111/j.2517-6161.1989.tb01749.x>, Horn (1981) <doi:10.1080/03610928108828074>, Li and Yao (2019) <doi:10.1016/j.ecosta.2018.01.001> with and without the modification of Bai, Pan, and Yin (2016) <doi:10.1007/s11749-017-0575-x>, Rackauskas and Zuokas (2007) <doi:10.1007/s10986-007-0018-6>, Simonoff and Tsai (1994) <doi:10.2307/2986026> with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) <doi:10.1016/S0378-3758(03)00210-6>, Szroeter (1978) <doi:10.2307/1913831>, Verbyla (1993) <doi:10.1111/j.2517-6161.1993.tb01918.x>, White (1980) <doi:10.2307/1912934>, Wilcox and Keselman (2006) <doi:10.1080/10629360500107923>, Yuce (2008) <https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070>, and Zhou, Song, and Thompson (2015) <doi:10.1002/cjs.11252>. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the conditional two-sided p-values of Kulinskaya (2008) <doi:10.48550/arXiv.0810.2124>, and probabilities for the nonparametric trend statistic of Lehmann (1975, ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) <doi:10.2307/1912934>, MacKinnon and White (1985) <doi:10.1016/0304-4076(85)90158-7>, Cribari-Neto (2004) <doi:10.1016/S0167-9473(02)00366-3>, Cribari-Neto et al. (2007) <doi:10.1080/03610920601126589>, Cribari-Neto and da Silva (2011) <doi:10.1007/s10182-010-0141-2>, Aftab and Chang (2016) <doi:10.18187/pjsor.v12i2.983>, and Li et al. (2017) <doi:10.1080/00949655.2016.1198906>.

  • Maintainer: Thomas Farrar
  • License: MIT + file LICENSE
  • Last published: 2025-06-07