fitMM function

Fit a Moving-Moving Model with 2 Embedded Brownian Motion

Fit a Moving-Moving Model with 2 Embedded Brownian Motion

Fit a Moving-Moving Model with 2 Embedded Brownian Motion with animal movement data at discretely observation times by maximizing a full likelihood constructed from the marginal density of increment. 'estVarMM' uses parametric bootstrap to obtain variance matrix of estimators from 'fitMM'.

fitMM( data, start, logtr = FALSE, method = "Nelder-Mead", optim.control = list(), integrControl = integr.control() ) estVarMM( est_theta, data, nBS, detailBS = FALSE, numThreads = 1, integrControl = integr.control() )

Arguments

  • data: data used to process estimation

  • start: starting value of the model, a vector of four components in the order of rate for moving1, rate for moving2, and volatility1(larger), volatility2(smaller).

  • logtr: logical, if TRUE parameters are estimated on the log scale.

  • method: the method argument to feed optim.

  • optim.control: a list of control to be passed to optim.

  • integrControl: a list of control parameters for the integrate

    function: rel.tol, abs.tol, subdivision.

  • est_theta: estimators of MRME model

  • nBS: number of bootstrap.

  • detailBS: whether or not output estimation results during bootstrap, which can be used to generate bootstrap CI.

  • numThreads: the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed.

Returns

a list of the following components: - estimate: the esimated parameter vector

  • loglik: maximized loglikelihood or composite loglikelihood evaluated at the estimate

  • convergence: convergence code from optim

Examples

## Not run: ## time consuming example tgrid <- seq(0, 100, length=100) set.seed(123) dat <- rMM(tgrid, 1, 0.1, 1, 0.1, "m1") ## fit whole dataset to the MR model fit <- fitMM(dat, start=c(1, 0.1, 1, 0.1)) fit var <- estVarMM(fit$estimate, dat, nBS = 10, numThreads = 6) var ## End(Not run)

References

Yan, J., Chen, Y., Lawrence-Apfel, K., Ortega, I. M., Pozdnyakov, V., Williams, S., and Meyer, T. (2014) A moving-resting process with an embedded Brownian motion for animal movements. Population Ecology. 56(2): 401--415.

Pozdnyakov, V., Elbroch, L., Labarga, A., Meyer, T., and Yan, J. (2017) Discretely observed Brownian motion governed by telegraph process: estimation. Methodology and Computing in Applied Probability. doi:10.1007/s11009-017-9547-6.

  • Maintainer: Chaoran Hu
  • License: GPL (>= 3.0)
  • Last published: 2024-01-10