Fit a Moving-Moving Model with 2 Embedded Brownian Motion
Fit a Moving-Moving Model with 2 Embedded Brownian Motion
Fit a Moving-Moving Model with 2 Embedded Brownian Motion with animal movement data at discretely observation times by maximizing a full likelihood constructed from the marginal density of increment. 'estVarMM' uses parametric bootstrap to obtain variance matrix of estimators from 'fitMM'.
start: starting value of the model, a vector of four components in the order of rate for moving1, rate for moving2, and volatility1(larger), volatility2(smaller).
logtr: logical, if TRUE parameters are estimated on the log scale.
method: the method argument to feed optim.
optim.control: a list of control to be passed to optim.
integrControl: a list of control parameters for the integrate
function: rel.tol, abs.tol, subdivision.
est_theta: estimators of MRME model
nBS: number of bootstrap.
detailBS: whether or not output estimation results during bootstrap, which can be used to generate bootstrap CI.
numThreads: the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed.
Returns
a list of the following components: - estimate: the esimated parameter vector
loglik: maximized loglikelihood or composite loglikelihood evaluated at the estimate
convergence: convergence code from optim
Examples
## Not run:## time consuming exampletgrid <- seq(0,100, length=100)set.seed(123)dat <- rMM(tgrid,1,0.1,1,0.1,"m1")## fit whole dataset to the MR modelfit <- fitMM(dat, start=c(1,0.1,1,0.1))fit
var <- estVarMM(fit$estimate, dat, nBS =10, numThreads =6)var
## End(Not run)
References
Yan, J., Chen, Y., Lawrence-Apfel, K., Ortega, I. M., Pozdnyakov, V., Williams, S., and Meyer, T. (2014) A moving-resting process with an embedded Brownian motion for animal movements. Population Ecology. 56(2): 401--415.
Pozdnyakov, V., Elbroch, L., Labarga, A., Meyer, T., and Yan, J. (2017) Discretely observed Brownian motion governed by telegraph process: estimation. Methodology and Computing in Applied Probability. doi:10.1007/s11009-017-9547-6.