vcov function

Variance-Covariance Matrix of smam Estimators

Variance-Covariance Matrix of smam Estimators

This function calculates variance covariance matrix for estimators from smam package. Different methods will be used for different smam models.

## S3 method for class 'smam_mrme' vcov( object, nBS = 25, detailBS = TRUE, numThreads = 5, gradMethod = "simple", vcovMethod = "pBootstrap", integrControl = integr.control(), ... ) ## S3 method for class 'smam_mm' vcov( object, nBS = 25, detailBS = TRUE, numThreads = 5, integrControl = integr.control(), ... ) ## S3 method for class 'smam_mrh' vcov(object, numThreads = 5, integrControl = integr.control(), ...) ## S3 method for class 'smam_mr' vcov(object, ...) ## S3 method for class 'smam_bmme' vcov(object, ...)

Arguments

  • object: a fitted object from one of smam::fitXXXX functions

  • nBS: number of bootstrap.

  • detailBS: whether or not output estimation results of bootstrap, which can be used to generate bootstrap CI. Required when vcovMethod=='pBootstrap'.

  • numThreads: the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed.

  • gradMethod: method used for numeric gradient (numDeriv::grad). Required when vcovMethod=='Godambe'.

  • vcovMethod: method of calculating variance covariance matrix. This should be one of pBootstrap (default) and Godambe.

  • integrControl: a list of control parameters for the integrate

    function: rel.tol, abs.tol, subdivision.

  • ...: Optional arguments that are not used

Examples

## time consuming example #tgrid <- seq(0, 100, length=100) #set.seed(123) #dat <- rMRME(tgrid, 1, 0.5, 1, 0.01, "m") ## fit whole dataset to the MRME model #fit <- fitMRME(dat, start=c(1, 0.5, 1, 0.01)) #fit ## get covariance matrix of estimators #vcov(fit)
  • Maintainer: Chaoran Hu
  • License: GPL (>= 3.0)
  • Last published: 2024-01-10