This function calculates variance covariance matrix for estimators from smam package. Different methods will be used for different smam models.
## S3 method for class 'smam_mrme'vcov( object, nBS =25, detailBS =TRUE, numThreads =5, gradMethod ="simple", vcovMethod ="pBootstrap", integrControl = integr.control(),...)## S3 method for class 'smam_mm'vcov( object, nBS =25, detailBS =TRUE, numThreads =5, integrControl = integr.control(),...)## S3 method for class 'smam_mrh'vcov(object, numThreads =5, integrControl = integr.control(),...)## S3 method for class 'smam_mr'vcov(object,...)## S3 method for class 'smam_bmme'vcov(object,...)
Arguments
object: a fitted object from one of smam::fitXXXX functions
nBS: number of bootstrap.
detailBS: whether or not output estimation results of bootstrap, which can be used to generate bootstrap CI. Required when vcovMethod=='pBootstrap'.
numThreads: the number of threads for parallel computation. If its value is greater than 1, then parallel computation will be processed. Otherwise, serial computation will be processed.
gradMethod: method used for numeric gradient (numDeriv::grad). Required when vcovMethod=='Godambe'.
vcovMethod: method of calculating variance covariance matrix. This should be one of pBootstrap (default) and Godambe.
integrControl: a list of control parameters for the integrate
function: rel.tol, abs.tol, subdivision.
...: Optional arguments that are not used
Examples
## time consuming example#tgrid <- seq(0, 100, length=100)#set.seed(123)#dat <- rMRME(tgrid, 1, 0.5, 1, 0.01, "m")## fit whole dataset to the MRME model#fit <- fitMRME(dat, start=c(1, 0.5, 1, 0.01))#fit## get covariance matrix of estimators#vcov(fit)