makeAckleyFunction function

Ackley Function

Ackley Function

Also known as Ackley's Path Function . Multimodal test function with its global optimum in the center of the defintion space. The implementation is based on the formula [REMOVE_ME]f(x)=aexp(b(1ni=1nxi))exp(1ni=1ncos(cxi)),[REMOVEME2] f(\mathbf{x}) = -a \cdot \exp\left(-b \cdot \sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i\right)}\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(c \cdot \mathbf{x}_i)\right), [REMOVE_ME_2]

with a=20a = 20, b=0.2b = 0.2 and c=2πc = 2\pi. The feasible region is given by the box constraints xi[32.768,32.768]\mathbf{x}_i \in [-32.768, 32.768].

makeAckleyFunction(dimensions)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

Returns

[smoof_single_objective_function]

Description

Also known as Ackley's Path Function . Multimodal test function with its global optimum in the center of the defintion space. The implementation is based on the formula

f(x)=aexp(b(1ni=1nxi))exp(1ni=1ncos(cxi)), f(\mathbf{x}) = -a \cdot \exp\left(-b \cdot \sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i\right)}\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(c \cdot \mathbf{x}_i)\right),

with a=20a = 20, b=0.2b = 0.2 and c=2πc = 2\pi. The feasible region is given by the box constraints xi[32.768,32.768]\mathbf{x}_i \in [-32.768, 32.768].

References

Ackley, D. H.: A connectionist machine for genetic hillclimbing. Boston: Kluwer Academic Publishers, 1987.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10