makeBohachevskyN1Function function

Bohachevsky function N. 1

Bohachevsky function N. 1

Highly multimodal single-objective test function. The mathematical formula is given by [REMOVE_ME]f(x)=i=1n1(xi2+2xi+120.3cos(3πxi)0.4cos(4πxi+1)+0.7)[REMOVEME2] f(\mathbf{x}) = \sum_{i = 1}^{n - 1} (\mathbf{x}_i^2 + 2 \mathbf{x}_{i + 1}^2 - 0.3\cos(3\pi\mathbf{x}_i) - 0.4\cos(4\pi\mathbf{x}_{i + 1}) + 0.7) [REMOVE_ME_2]

with box-constraints xi[100,100]\mathbf{x}_i \in [-100, 100] for i=1,,ni = 1, \ldots, n. The multimodality will be visible by zooming in in the plot.

makeBohachevskyN1Function(dimensions)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

Returns

[smoof_single_objective_function]

Description

Highly multimodal single-objective test function. The mathematical formula is given by

f(x)=i=1n1(xi2+2xi+120.3cos(3πxi)0.4cos(4πxi+1)+0.7) f(\mathbf{x}) = \sum_{i = 1}^{n - 1} (\mathbf{x}_i^2 + 2 \mathbf{x}_{i + 1}^2 - 0.3\cos(3\pi\mathbf{x}_i) - 0.4\cos(4\pi\mathbf{x}_{i + 1}) + 0.7)

with box-constraints xi[100,100]\mathbf{x}_i \in [-100, 100] for i=1,,ni = 1, \ldots, n. The multimodality will be visible by zooming in in the plot.

References

I. O. Bohachevsky, M. E. Johnson, M. L. Stein, General Simulated Annealing for Function Optimization, Technometrics, vol. 28, no. 3, pp. 209-217, 1986.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10