DTLZ3 Function (family)
Builds and returns the multi-objective DTLZ3 test problem. The formula is very similar to the formula of DTLZ2, but it uses the g function of DTLZ1, which introduces a lot of local Pareto-optimal fronts. Thus, this problems is well suited to check the ability of an optimizer to converge to the global Pareto-optimal front.
The DTLZ3 test problem is defined as follows:
Minimize c("\n", "f[1](X)=(1+g(XM))∗cos(x[1]∗pi/2)∗cos(x[2]∗pi/2)∗...∗cos(x[M−2]∗pi/2)∗cos(x[M−1]∗pi/2)")
Minimize c("\n", "f[2](X)=(1+g(XM))∗cos(x[1]∗pi/2)∗cos(x[2]∗pi/2)∗...∗cos(x[M−2]∗pi/2)∗sin(x[M−1]∗pi/2)")
Minimize c("\n", "f[3](X)=(1+g(XM))∗cos(x[1]∗pi/2)∗cos(x[2]∗pi/2)∗...∗sin(x[M−2]∗pi/2)")
...
Minimize c("\n", "f[M−1](X)=(1+g(XM))∗cos(x[1]∗pi/2)∗sin(x[2]∗pi/2)")
Minimize c("\n", "f[M](X)=(1+g(XM))∗sin(x[1]∗pi/2)")
with 0<=x[i]<=1, for i=1,2,...,n
where c("\n", "g(XM)=100∗(∣XM∣+sumx[i]inXM(x[i]−0.5)2−cos(20∗pi∗(x[i]−0.5)))")
makeDTLZ3Function(dimensions, n.objectives)
Arguments
Returns
[smoof_multi_objective_function
]
References
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001