DTLZ4 Function (family)
Builds and returns the multi-objective DTLZ4 test problem. It is a slight modification of the DTLZ2 problems by introducing the parameter α. The parameter is used to map xi→xiα.
The DTLZ4 test problem is defined as follows:
Minimize c("\n", "f[1](X)=(1+g(XM))∗cos(x[1]alpha∗pi/2)∗cos(x[2]alpha∗pi/2)∗...∗cos(x[M−2]alpha∗pi/2)∗cos(x[M−1]alpha∗pi/2)")
Minimize c("\n", "f[2](X)=(1+g(XM))∗cos(x[1]alpha∗pi/2)∗cos(x[2]alpha∗pi/2)∗...∗cos(x[M−2]alpha∗pi/2)∗sin(x[M−1]alpha∗pi/2)")
Minimize c("\n", "f[3](X)=(1+g(XM))∗cos(x[1]alpha∗pi/2)∗cos(x[2]alpha∗pi/2)∗...∗sin(x[M−2]alpha∗pi/2)")
...
Minimize c("\n", "f[M−1](X)=(1+g(XM))∗cos(x[1]alpha∗pi/2)∗sin(x[2]alpha∗pi/2)")
Minimize c("\n", "f[M](X)=(1+g(XM))∗sin(x[1]alpha∗pi/2)")
with 0<=x[i]<=1, for i=1,2,...,n
where c("\n", "g(XM)=sumx[i]inXM(x[i]−0.5)2")
makeDTLZ4Function(dimensions, n.objectives, alpha = 100)
Arguments
-
dimensions
: [integer(1)
]
Number of decision variables.
-
n.objectives
: [integer(1)
]
Number of objectives.
-
alpha
: [numeric(1)
]
Optional parameter. Default is 100, which is recommended by Deb et al.
Returns
[smoof_multi_objective_function
]
References
K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001