makeDTLZ6Function function

DTLZ6 Function (family)

DTLZ6 Function (family)

Builds and returns the multi-objective DTLZ6 test problem. This problem can be characterized by a disconnected Pareto-optimal front in the search space. This introduces a new challenge to evolutionary multi-objective optimizers, i.e., to maintain different subpopulations within the search space to cover the entire Pareto-optimal front.

The DTLZ6 test problem is defined as follows:

Minimize c("\n\n", "f[1](X)=(1+g(XM))cos(theta[1]pi/2)cos(theta[2]pi/2)...cos(theta[M2]pi/2)cos(theta[M1]pi/2)f[1](X) = (1 + g(XM)) * cos(theta[1] * pi/2) * cos(theta[2] * pi/2) * ... * cos(theta[M-2] * pi/2) * cos(theta[M-1] * pi/2)")

Minimize c("\n\n", "f[2](X)=(1+g(XM))cos(theta[1]pi/2)cos(theta[2]pi/2)...cos(theta[M2]pi/2)sin(theta[M1]pi/2)f[2](X) = (1 + g(XM)) * cos(theta[1] * pi/2) * cos(theta[2] * pi/2) * ... * cos(theta[M-2] * pi/2) * sin(theta[M-1] * pi/2)")

Minimize c("\n\n", "f[3](X)=(1+g(XM))cos(theta[1]pi/2)cos(theta[2]pi/2)...sin(theta[M2]pi/2)f[3](X) = (1 + g(XM)) * cos(theta[1] * pi/2) * cos(theta[2] * pi/2) * ... * sin(theta[M-2] * pi/2)")

......

Minimize c("\n\n", "f[M1](X)=(1+g(XM))cos(theta[1]pi/2)sin(theta[2]pi/2)f[M-1](X) = (1 + g(XM)) * cos(theta[1] * pi/2) * sin(theta[2] * pi/2)")

Minimize c("\n\n", "f[M](X)=(1+g(XM))sin(theta[1]pi/2)f[M](X) = (1 + g(XM)) * sin(theta[1] * pi/2)")

with 0<=x[i]<=10 <= x[i] <= 1, for i=1,2,...,ni=1,2,...,n

where c("\n\n", "theta[i]=pi/(4(1+g(XM)))(1+2g(XM)x[i]),theta[i] = pi / (4 * (1 + g(XM))) * (1 + 2 * g(XM) * x[i]),")

for i=2,3,...,(M1)i = 2,3,...,(M-1)

and c("\n\n", "g(XM)=sumx[i]inXMx[i]0.1g(XM) = sum{x[i] in XM} {x[i]^0.1}")

makeDTLZ6Function(dimensions, n.objectives)

Arguments

  • dimensions: [integer(1)]

    Number of decision variables.

  • n.objectives: [integer(1)]

    Number of objectives.

Returns

[smoof_multi_objective_function]

Note

Attention: Within the succeeding work of Deb et al. (K. Deb and L. Thiele and M. Laumanns and E. Zitzler (2002). Scalable multi-objective optimization test problems, Proceedings of the IEEE Congress on Evolutionary Computation, pp. 825-830) this problem was called DTLZ5.

References

K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10