makeDTLZ7Function function

DTLZ7 Function (family)

DTLZ7 Function (family)

Builds and returns the multi-objective DTLZ7 test problem. This problem can be characterized by a disconnected Pareto-optimal front in the search space. This introduces a new challenge to evolutionary multi-objective optimizers, i.e., to maintain different subpopulations within the search space to cover the entire Pareto-optimal front.

The DTLZ7 test problem is defined as follows:

Minimize c("\n\n", "f[1](X)=1/2x[1]x[2]...x[M1](1+g(XM))f[1](X) = 1/2 * x[1] * x[2] * ... * x[M-1] * (1 + g(XM))")

Minimize c("\n\n", "f[2](X)=1/2x[1]x[2]...(1x[M1])(1+g(XM))f[2](X) = 1/2 * x[1] * x[2] * ... * (1 - x[M-1]) * (1 + g(XM))")

......

Minimize c("\n\n", "f[M1](X)=1/2x[1](1x[2])(1+g(XM))f[M-1](X) = 1/2 * x[1] * (1 - x[2]) * (1 + g(XM))")

Minimize c("\n\n", "f[M](X)=1/2(1x[1])(1+g(XM))f[M](X) = 1/2 * (1 - x[1]) * (1 + g(XM))")

with 0<=x[i]<=10 <= x[i] <= 1, for i=1,2,...,ni=1,2,...,n

where c("\n\n", "g(XM)=1+9/XMsumx[i]inXMx[i]g(XM) = 1 + 9 / |XM| * sum{x[i] in XM} {x[i]}")

and c("\n\n", "h(f[1],f[2],...f[M1],g)=Msumiin1:(M1)f[i]/(1+g)(1+sin(3pif[i]))h(f[1],f[2],...f[M-1],g) = M - sum{i in 1:(M-1)} {f[i] / (1 + g) * (1 + sin(3 * pi * f[i]))}")

makeDTLZ7Function(dimensions, n.objectives)

Arguments

  • dimensions: [integer(1)]

    Number of decision variables.

  • n.objectives: [integer(1)]

    Number of objectives.

Returns

[smoof_multi_objective_function]

Note

Attention: Within the succeeding work of Deb et al. (K. Deb and L. Thiele and M. Laumanns and E. Zitzler (2002). Scalable multi-objective optimization test problems, Proceedings of the IEEE Congress on Evolutionary Computation, pp. 825-830) this problem was called DTLZ6.

References

K. Deb and L. Thiele and M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems. Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 112, 2001

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10