makeDentFunction function

Dent Function

Dent Function

Builds and returns the bi-objective Dent test problem, which is defined as follows: [REMOVE_ME]f(x)=(f1(x1),f2(x))[REMOVEME2] f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right) [REMOVE_ME_2]

with [REMOVE_ME]f1(x1)=0.5((1+(x1+x2)2)+(1+(x1x2)2)+x1x2)+d[REMOVEME2] f_1(\mathbf{x}_1) = 0.5 \left( \sqrt(1 + (x_1 + x_2)^2) + \sqrt(1 + (x_1 - x_2)^2) + x_1 - x_2\right) + d [REMOVE_ME_2]

and [REMOVE_ME]f1(x1)=0.5((1+(x1+x2)2)+(1+(x1x2)2)x1+x2)+d[REMOVEME2] f_1(\mathbf{x}_1) = 0.5 \left( \sqrt(1 + (x_1 + x_2)^2) + \sqrt(1 + (x_1 - x_2)^2) - x_1 + x_2\right) + d [REMOVE_ME_2]

where d=λexp((x1x2)2)d = \lambda * \exp(-(x_1 - x_2)^2) and xi[1.5,1.5],i=1,2\mathbf{x}_i \in [-1.5, 1.5], i = 1, 2.

makeDentFunction()

Returns

[smoof_multi_objective_function]

Description

Builds and returns the bi-objective Dent test problem, which is defined as follows:

f(x)=(f1(x1),f2(x)) f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right)

with

f1(x1)=0.5((1+(x1+x2)2)+(1+(x1x2)2)+x1x2)+d f_1(\mathbf{x}_1) = 0.5 \left( \sqrt(1 + (x_1 + x_2)^2) + \sqrt(1 + (x_1 - x_2)^2) + x_1 - x_2\right) + d

and

f1(x1)=0.5((1+(x1+x2)2)+(1+(x1x2)2)x1+x2)+d f_1(\mathbf{x}_1) = 0.5 \left( \sqrt(1 + (x_1 + x_2)^2) + \sqrt(1 + (x_1 - x_2)^2) - x_1 + x_2\right) + d

where d=λexp((x1x2)2)d = \lambda * \exp(-(x_1 - x_2)^2) and xi[1.5,1.5],i=1,2\mathbf{x}_i \in [-1.5, 1.5], i = 1, 2.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10