makeDixonPriceFunction function

Dixon-Price Function

Dixon-Price Function

Dixon and Price defined the function [REMOVE_ME]f(x)=(x11)2+i=1ni(2xi2xi1)[REMOVEME2] f(\mathbf{x}) = (\mathbf{x}_1 - 1)^2 + \sum_{i = 1}^{n} i (2\mathbf{x}_i^2 - \mathbf{x}_{i - 1}) [REMOVE_ME_2]

subject to xi[10,10]\mathbf{x}_i \in [-10, 10] for i=1,,ni = 1, \ldots, n.

makeDixonPriceFunction(dimensions)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

Returns

[smoof_single_objective_function]

Description

Dixon and Price defined the function

f(x)=(x11)2+i=1ni(2xi2xi1) f(\mathbf{x}) = (\mathbf{x}_1 - 1)^2 + \sum_{i = 1}^{n} i (2\mathbf{x}_i^2 - \mathbf{x}_{i - 1})

subject to xi[10,10]\mathbf{x}_i \in [-10, 10] for i=1,,ni = 1, \ldots, n.

References

L. C. W. Dixon, R. C. Price, The Truncated Newton Method for Sparse Unconstrained Optimisation Using Automatic Differentiation, Journal of Optimization Theory and Applications, vol. 60, no. 2, pp. 261-275, 1989.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10