makeGriewankFunction function

Griewank Function

Griewank Function

Highly multimodal function with a lot of regularly distributed local minima. The corresponding formula is: [REMOVE_ME]f(x)=i=1nxi24000i=1ncos(xii)+1[REMOVEME2] f(\mathbf{x}) = \sum_{i=1}^{n} \frac{\mathbf{x}_i^2}{4000} - \prod_{i=1}^{n} \cos\left(\frac{\mathbf{x}_i}{\sqrt{i}}\right) + 1 [REMOVE_ME_2]

subject to xi[100,100],i=1,,n\mathbf{x}_i \in [-100, 100], i = 1, \ldots, n.

makeGriewankFunction(dimensions)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

Returns

[smoof_single_objective_function]

Description

Highly multimodal function with a lot of regularly distributed local minima. The corresponding formula is:

f(x)=i=1nxi24000i=1ncos(xii)+1 f(\mathbf{x}) = \sum_{i=1}^{n} \frac{\mathbf{x}_i^2}{4000} - \prod_{i=1}^{n} \cos\left(\frac{\mathbf{x}_i}{\sqrt{i}}\right) + 1

subject to xi[100,100],i=1,,n\mathbf{x}_i \in [-100, 100], i = 1, \ldots, n.

References

A. O. Griewank, Generalized Descent for Global Optimization, Journal of Optimization Theory and Applications, vol. 34, no. 1, pp. 11-39, 1981.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10