makeHartmannFunction function

Hartmann Function

Hartmann Function

Unimodal single-objective test function with six local minima. The implementation is based on the mathematical formulation [REMOVE_ME]f(x)=i=14αi exp(j=16Aij(xjPij)2)[REMOVEME2] f(x) = - \sum_{i=1}^4 \alpha_i \ exp \left(-\sum_{j=1}^6 A_{ij}(x_j-P_{ij})^2 \right) [REMOVE_ME_2], where [REMOVE_ME]α=(1.0,1.2,3.0,3.2)T,A=(103173.501.780.0510170.181433.51.7101781780.05100.114),P=104(1312169655691248283588623294135830737361004999123481451352228833047665040478828873257431091381)[REMOVEME2] \alpha = (1.0, 1.2, 3.0, 3.2)^T, \\A = \left( \begin{array}{rrrrrr}10 & 3 & 17 & 3.50 & 1.7 & 8 \\0.05 & 10 & 17 & 0.1 & 8 & 14 \\3 & 3.5 & 1.7 & 10 & 17 & 8 \\17 & 8 & 0.05 & 10 & 0.1 & 14\end{array} \right), \\P = 10^{-4} \cdot \left(\begin{array}{rrrrrr}1312 & 1696 & 5569 & 124 & 8283 & 5886 \\2329 & 4135 & 8307 & 3736 & 1004 & 9991 \\2348 & 1451 & 3522 & 2883 & 3047 & 6650 \\4047 & 8828 & 8732 & 5743 & 1091 & 381\end{array} \right) [REMOVE_ME_2]

The function is restricted to six dimensions with xi[0,1],i=1,,6.\mathbf{x}_i \in [0,1], i = 1, \ldots, 6.

The function is not normalized in contrast to some benchmark applications in the literature.

makeHartmannFunction(dimensions)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

Returns

[smoof_single_objective_function]

Description

Unimodal single-objective test function with six local minima. The implementation is based on the mathematical formulation

f(x)=i=14αi exp(j=16Aij(xjPij)2) f(x) = - \sum_{i=1}^4 \alpha_i \ exp \left(-\sum_{j=1}^6 A_{ij}(x_j-P_{ij})^2 \right)

, where

α=(1.0,1.2,3.0,3.2)T,A=(103173.501.780.0510170.181433.51.7101781780.05100.114),P=104(1312169655691248283588623294135830737361004999123481451352228833047665040478828873257431091381) \alpha = (1.0, 1.2, 3.0, 3.2)^T, \\A = \left( \begin{array}{rrrrrr}10 & 3 & 17 & 3.50 & 1.7 & 8 \\0.05 & 10 & 17 & 0.1 & 8 & 14 \\3 & 3.5 & 1.7 & 10 & 17 & 8 \\17 & 8 & 0.05 & 10 & 0.1 & 14\end{array} \right), \\P = 10^{-4} \cdot \left(\begin{array}{rrrrrr}1312 & 1696 & 5569 & 124 & 8283 & 5886 \\2329 & 4135 & 8307 & 3736 & 1004 & 9991 \\2348 & 1451 & 3522 & 2883 & 3047 & 6650 \\4047 & 8828 & 8732 & 5743 & 1091 & 381\end{array} \right)

The function is restricted to six dimensions with xi[0,1],i=1,,6.\mathbf{x}_i \in [0,1], i = 1, \ldots, 6.

The function is not normalized in contrast to some benchmark applications in the literature.

References

Picheny, V., Wagner, T., & Ginsbourger, D. (2012). A benchmark of kriging-based infill criteria for noisy optimization.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10