makeMichalewiczFunction function

Michalewicz Function

Michalewicz Function

Highly multimodal single-objective test function with n!n! local minima with the formula: [REMOVE_ME]f(x)=i=1nsin(xi)(sin(ixiπ))2m.[REMOVEME2] f(\mathbf{x}) = -\sum_{i=1}^{n} \sin(\mathbf{x}_i) \cdot \left(\sin\left(\frac{i \cdot \mathbf{x}_i}{\pi}\right)\right)^{2m}. [REMOVE_ME_2]

The recommended value m=10m = 10, which is used as a default in the implementation.

makeMichalewiczFunction(dimensions, m = 10)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

  • m: [integer(1)]

    Steepness parameter.

Returns

[smoof_single_objective_function]

Description

Highly multimodal single-objective test function with n!n! local minima with the formula:

f(x)=i=1nsin(xi)(sin(ixiπ))2m. f(\mathbf{x}) = -\sum_{i=1}^{n} \sin(\mathbf{x}_i) \cdot \left(\sin\left(\frac{i \cdot \mathbf{x}_i}{\pi}\right)\right)^{2m}.

The recommended value m=10m = 10, which is used as a default in the implementation.

Note

The location of the global optimum s varying based on both the dimension and mm parameter and is thus not provided in the implementation.

References

Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Heidelberg, New York: Springer-Verlag, 1992.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10

Downloads (last 30 days):