makeModifiedRastriginFunction function

Rastrigin Function

Rastrigin Function

A modified version of the Rastrigin function following the formula: [REMOVE_ME]f(x)=i=1n10(1+cos(2πkixi))+2kixi2.[REMOVEME2] f(\mathbf{x}) = \sum_{i=1}^{n} 10\left(1 + \cos(2\pi k_i \mathbf{x}_i)\right) + 2 k_i \mathbf{x}_i^2. [REMOVE_ME_2]

The box-constraints are given by xi[0,1]\mathbf{x}_i \in [0, 1] for i=1,,ni = 1, \ldots, n and kk is a numerical vector. Deb et al. (see references) use, e.g., k=(2,2,3,4)k = (2, 2, 3, 4) for n=4n = 4. See the reference for details.

makeModifiedRastriginFunction(dimensions, k = rep(1, dimensions))

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

  • k: [numeric]

    Vector of numerical values of length dimensions. Default is rep(1, dimensions)

Returns

[smoof_single_objective_function]

Description

A modified version of the Rastrigin function following the formula:

f(x)=i=1n10(1+cos(2πkixi))+2kixi2. f(\mathbf{x}) = \sum_{i=1}^{n} 10\left(1 + \cos(2\pi k_i \mathbf{x}_i)\right) + 2 k_i \mathbf{x}_i^2.

The box-constraints are given by xi[0,1]\mathbf{x}_i \in [0, 1] for i=1,,ni = 1, \ldots, n and kk is a numerical vector. Deb et al. (see references) use, e.g., k=(2,2,3,4)k = (2, 2, 3, 4) for n=4n = 4. See the reference for details.

References

Kalyanmoy Deb and Amit Saha. Multimodal optimization using a bi- objective evolutionary algorithm. Evolutionary Computation, 20(1):27-62, 2012.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10