makePowellSumFunction function

Powell-Sum Function

Powell-Sum Function

The formula that underlies the implementation is given by [REMOVE_ME]f(x)=i=1nxii+1[REMOVEME2] f(\mathbf{x}) = \sum_{i=1}^n |\mathbf{x}_i|^{i+1} [REMOVE_ME_2]

with xi[1,1],i=1,,n\mathbf{x}_i \in [-1, 1], i = 1, \ldots, n.

makePowellSumFunction(dimensions)

Arguments

  • dimensions: [integer(1)]

    Size of corresponding parameter space.

Returns

[smoof_single_objective_function]

Description

The formula that underlies the implementation is given by

f(x)=i=1nxii+1 f(\mathbf{x}) = \sum_{i=1}^n |\mathbf{x}_i|^{i+1}

with xi[1,1],i=1,,n\mathbf{x}_i \in [-1, 1], i = 1, \ldots, n.

References

S. Rahnamyan, H. R. Tizhoosh, N. M. M. Salama, A Novel Population Initialization Method for Accelerating Evolutionary Algorithms, Computers and Mathematics with Applications, vol. 53, no. 10, pp. 1605-1614, 2007.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10