makeShekelFunction function

Shekel functions

Shekel functions

Single-objective test function based on the formula [REMOVE_ME]f(x)=i=1m(j=14(xjCji)2+βi)1[REMOVEME2] f(\mathbf{x}) = -\sum_{i=1}^{m} \left(\sum_{j=1}^{4} (x_j - C_{ji})^2 + \beta_{i}\right)^{-1} [REMOVE_ME_2]. Here, m{5,7,10}m \in \{5, 7, 10\} defines the number of local optima, CC is a 4x104 x 10 matrix and β=110(1,1,2,2,4,4,6,3,7,5,5)\beta = \frac{1}{10}(1, 1, 2, 2, 4, 4, 6, 3, 7, 5, 5) is a vector. See https://www.sfu.ca/~ssurjano/shekel.html

for a defintion of CC.

makeShekelFunction(m)

Arguments

  • m: [numeric(1)]

    Integer parameter (defines the number of local optima). Possible values are 5, 7 or 10.

Returns

[smoof_single_objective_function]

Description

Single-objective test function based on the formula

f(x)=i=1m(j=14(xjCji)2+βi)1 f(\mathbf{x}) = -\sum_{i=1}^{m} \left(\sum_{j=1}^{4} (x_j - C_{ji})^2 + \beta_{i}\right)^{-1}

. Here, m{5,7,10}m \in \{5, 7, 10\} defines the number of local optima, CC is a 4x104 x 10 matrix and β=110(1,1,2,2,4,4,6,3,7,5,5)\beta = \frac{1}{10}(1, 1, 2, 2, 4, 4, 6, 3, 7, 5, 5) is a vector. See https://www.sfu.ca/~ssurjano/shekel.html

for a defintion of CC.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10