makeShubertFunction function

Shubert Function

Shubert Function

The defintion of this two-dimensional function is given by [REMOVE_ME]f(x)=i=12(j=15cos((j+1)xi+j)[REMOVEME2] f(\mathbf{x}) = \prod_{i = 1}^{2} \left(\sum_{j = 1}^{5} \cos((j + 1)\mathbf{x}_i + j\right) [REMOVE_ME_2]

subject to xi[10,10],i=1,2\mathbf{x}_i \in [-10, 10], i = 1, 2.

makeShubertFunction()

Returns

[smoof_single_objective_function]

Description

The defintion of this two-dimensional function is given by

f(x)=i=12(j=15cos((j+1)xi+j) f(\mathbf{x}) = \prod_{i = 1}^{2} \left(\sum_{j = 1}^{5} \cos((j + 1)\mathbf{x}_i + j\right)

subject to xi[10,10],i=1,2\mathbf{x}_i \in [-10, 10], i = 1, 2.

References

J. P. Hennart (ed.), Numerical Analysis, Proc. 3rd AS Workshop, Lecture Notes in Mathematics, vol. 90, Springer, 1982.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10