makeStyblinkskiTangFunction function

Styblinkski-Tang function

Styblinkski-Tang function

This function is based on the defintion [REMOVE_ME]f(x)=12i=12(xi416xi2+5xi)[REMOVEME2] f(\mathbf{x}) = \frac{1}{2} \sum_{i = 1}^{2} (\mathbf{x}_i^4 - 16 \mathbf{x}_i^2 + 5\mathbf{x}_i) [REMOVE_ME_2]

with box-constraints given by xi[5,5],i=1,2\mathbf{x}_i \in [-5, 5], i = 1, 2.

makeStyblinkskiTangFunction()

Returns

[smoof_single_objective_function]

Description

This function is based on the defintion

f(x)=12i=12(xi416xi2+5xi) f(\mathbf{x}) = \frac{1}{2} \sum_{i = 1}^{2} (\mathbf{x}_i^4 - 16 \mathbf{x}_i^2 + 5\mathbf{x}_i)

with box-constraints given by xi[5,5],i=1,2\mathbf{x}_i \in [-5, 5], i = 1, 2.

References

Z. K. Silagadze, Finding Two-Dimesnional Peaks, Physics of Particles and Nuclei Letters, vol. 4, no. 1, pp. 73-80, 2007.

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10