makeZDT1Function function

ZDT1 Function

ZDT1 Function

Builds and returns the two-objective ZDT1 test problem. For mm objective it is defined as follows: [REMOVE_ME]f(x)=(f1(x1),f2(x))[REMOVEME2] f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right) [REMOVE_ME_2]

with [REMOVE_ME]f1(x1)=x1,f2(x)=g(x)h(f1(x1),g(x))[REMOVEME2] f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x})) [REMOVE_ME_2]

where [REMOVE_ME]g(x)=1+9m1i=2mxi,h(f1,g)=1f1g[REMOVEME2] g(\mathbf{x}) = 1 + \frac{9}{m - 1} \sum_{i = 2}^m \mathbf{x}_i, h(f_1, g) = 1 - \sqrt{\frac{f_1}{g}} [REMOVE_ME_2]

and xi[0,1],i=1,,m\mathbf{x}_i \in [0,1], i = 1, \ldots, m

makeZDT1Function(dimensions)

Arguments

  • dimensions: [integer(1)]

    Number of decision variables.

Returns

[smoof_multi_objective_function]

Description

Builds and returns the two-objective ZDT1 test problem. For mm objective it is defined as follows:

f(x)=(f1(x1),f2(x)) f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right)

with

f1(x1)=x1,f2(x)=g(x)h(f1(x1),g(x)) f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x}))

where

g(x)=1+9m1i=2mxi,h(f1,g)=1f1g g(\mathbf{x}) = 1 + \frac{9}{m - 1} \sum_{i = 2}^m \mathbf{x}_i, h(f_1, g) = 1 - \sqrt{\frac{f_1}{g}}

and xi[0,1],i=1,,m\mathbf{x}_i \in [0,1], i = 1, \ldots, m

References

E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173-195, 2000

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10