makeZDT3Function function

ZDT3 Function

ZDT3 Function

Builds and returns the two-objective ZDT3 test problem. For mm objective it is defined as follows [REMOVE_ME]f(x)=(f1(x1),f2(x))[REMOVEME2] f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right) [REMOVE_ME_2]

with [REMOVE_ME]f1(x1)=x1,f2(x)=g(x)h(f1(x1),g(x))[REMOVEME2] f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x})) [REMOVE_ME_2]

where [REMOVE_ME]g(x)=1+9m1i=2mxi,h(f1,g)=1f1(x)g(x)(f1(x)g(x))sin(10πf1(x))[REMOVEME2] g(\mathbf{x}) = 1 + \frac{9}{m - 1} \sum_{i = 2}^m \mathbf{x}_i, h(f_1, g) = 1 - \sqrt{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}} - \left(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right)\sin(10\pi f_1(\mathbf{x})) [REMOVE_ME_2]

and xi[0,1],i=1,,m\mathbf{x}_i \in [0,1], i = 1, \ldots, m. This function has some discontinuities in the Pareto-optimal front introduced by the sine term in the hh function (see above). The front consists of multiple convex parts.

makeZDT3Function(dimensions)

Arguments

  • dimensions: [integer(1)]

    Number of decision variables.

Returns

[smoof_multi_objective_function]

Description

Builds and returns the two-objective ZDT3 test problem. For mm objective it is defined as follows

f(x)=(f1(x1),f2(x)) f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right)

with

f1(x1)=x1,f2(x)=g(x)h(f1(x1),g(x)) f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x}))

where

g(x)=1+9m1i=2mxi,h(f1,g)=1f1(x)g(x)(f1(x)g(x))sin(10πf1(x)) g(\mathbf{x}) = 1 + \frac{9}{m - 1} \sum_{i = 2}^m \mathbf{x}_i, h(f_1, g) = 1 - \sqrt{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}} - \left(\frac{f_1(\mathbf{x})}{g(\mathbf{x})}\right)\sin(10\pi f_1(\mathbf{x}))

and xi[0,1],i=1,,m\mathbf{x}_i \in [0,1], i = 1, \ldots, m. This function has some discontinuities in the Pareto-optimal front introduced by the sine term in the hh function (see above). The front consists of multiple convex parts.

References

E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173-195, 2000

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10