makeZDT4Function function

ZDT4 Function

ZDT4 Function

Builds and returns the two-objective ZDT4 test problem. For mm objective it is defined as follows [REMOVE_ME]f(x)=(f1(x1),f2(x))[REMOVEME2] f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right) [REMOVE_ME_2]

with [REMOVE_ME]f1(x1)=x1,f2(x)=g(x)h(f1(x1),g(x))[REMOVEME2] f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x})) [REMOVE_ME_2]

where [REMOVE_ME]g(x)=1+10(m1)+i=2m(xi210cos(4πxi)),h(f1,g)=1f1(x)g(x)[REMOVEME2] g(\mathbf{x}) = 1 + 10 (m - 1) + \sum_{i = 2}^{m} (\mathbf{x}_i^2 - 10\cos(4\pi\mathbf{x}_i)), h(f_1, g) = 1 - \sqrt{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}} [REMOVE_ME_2]

and xi[0,1],i=1,,m\mathbf{x}_i \in [0,1], i = 1, \ldots, m. This function has many Pareto-optimal fronts and is thus suited to test the algorithms ability to tackle multimodal problems.

makeZDT4Function(dimensions)

Arguments

  • dimensions: [integer(1)]

    Number of decision variables.

Returns

[smoof_multi_objective_function]

Description

Builds and returns the two-objective ZDT4 test problem. For mm objective it is defined as follows

f(x)=(f1(x1),f2(x)) f(\mathbf{x}) = \left(f_1(\mathbf{x}_1), f_2(\mathbf{x})\right)

with

f1(x1)=x1,f2(x)=g(x)h(f1(x1),g(x)) f_1(\mathbf{x}_1) = \mathbf{x}_1, f_2(\mathbf{x}) = g(\mathbf{x}) h(f_1(\mathbf{x}_1), g(\mathbf{x}))

where

g(x)=1+10(m1)+i=2m(xi210cos(4πxi)),h(f1,g)=1f1(x)g(x) g(\mathbf{x}) = 1 + 10 (m - 1) + \sum_{i = 2}^{m} (\mathbf{x}_i^2 - 10\cos(4\pi\mathbf{x}_i)), h(f_1, g) = 1 - \sqrt{\frac{f_1(\mathbf{x})}{g(\mathbf{x})}}

and xi[0,1],i=1,,m\mathbf{x}_i \in [0,1], i = 1, \ldots, m. This function has many Pareto-optimal fronts and is thus suited to test the algorithms ability to tackle multimodal problems.

References

E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173-195, 2000

  • Maintainer: Jakob Bossek
  • License: BSD_2_clause + file LICENSE
  • Last published: 2023-03-10