Replicate the LeSage and Pace (2009), section 10.1.5 experiment
This method replicates the experiment from LeSage and Pace (2009), section 10.1.5. It first generates data from a SAR probit model and then estimates the model with our implementation.
LeSagePaceExperiment(n = 400, beta = c(0, 1, -1), rho = 0.75, ndraw = 1000, burn.in = 200, thinning = 1, m = 10, computeMarginalEffects=TRUE, ...)
n
: sample sizebeta
: parameter vectorrho
: spatial dependence parameterndraw
: number of drawsburn.in
: number of burn-in samplesthinning
: thinning parameterm
: Gibbs sampler burn-in size for drawing from the truncated multinormal distributioncomputeMarginalEffects
: Should marginal effects be computed?...
: Additional parameters to be passed to sar_probit_mcmc
Returns a structure of class sarprobit
LeSage, J. and Pace, R. K. (2009), Introduction to Spatial Econometrics, CRC Press, section 10.1.5
Stefan Wilhelm wilhelm@financial.com
# LeSage/Pace(2009), Table 10.1, p.291: n=400, m=10 res1 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75, ndraw=1000, burn.in=200, thinning=1, m=10) res1$time res1$coefficients summary(res1) # LeSage/Pace(2009), Table 10.1, p.291: n=1000, m=1 res2 <- LeSagePaceExperiment(n=1000, beta=c(0,1,-1), rho=0.75, ndraw=1000, burn.in=200, thinning=1, m=1) res2$time res2$coefficients summary(res2) # LeSage/Pace(2009), Table 10.2, p.291: n=400, m=1 res400.1 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75, ndraw=1000, burn.in=200, thinning=1, m=1) summary(res400.1) # LeSage/Pace(2009), Table 10.2, p.291: n=400, m=2 res400.2 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75, ndraw=1000, burn.in=200, thinning=1, m=2) summary(res400.2) # LeSage/Pace(2009), Table 10.2, p.291: n=400, m=10 res400.10 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75, ndraw=1000, burn.in=200, thinning=1, m=10) summary(res400.10)