plot.sarprobit function

Plot Diagnostics for sarprobit, semprobit or sartobit objects

Plot Diagnostics for sarprobit, semprobit or sartobit objects

Three plots (selectable by which) are currently available: MCMC trace plots, autocorrelation plots and posterior density plots.

## S3 method for class 'sarprobit' plot(x, which = c(1, 2, 3), ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., trueparam = NULL) ## S3 method for class 'semprobit' plot(x, which = c(1, 2, 3), ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., trueparam = NULL) ## S3 method for class 'sartobit' plot(x, which = c(1, 2, 3), ask = prod(par("mfcol")) < length(which) && dev.interactive(), ..., trueparam = NULL)

Arguments

  • x: a sarprobit or semprobit object
  • which: if a subset of the plots is required, specify a subset of the numbers 1:3.
  • ask: logical; if TRUE, the user is asked before each plot, see par(ask=.).
  • ...: other parameters to be passed through to plotting functions.
  • trueparam: a vector of "true" parameter values to be marked as vertical lines in posterior density plot

Returns

This function does not return any values.

Author(s)

Stefan Wilhelm wilhelm@financial.com

Examples

library(Matrix) set.seed(2) # number of observations n <- 100 # true parameters beta <- c(0, 1, -1) rho <- 0.75 # design matrix with two standard normal variates as "covariates" X <- cbind(intercept=1, x=rnorm(n), y=rnorm(n)) # sparse identity matrix I_n <- sparseMatrix(i=1:n, j=1:n, x=1) # number of nearest neighbors in spatial weight matrix W m <- 6 # spatial weight matrix with m=6 nearest neighbors # W must not have non-zeros in the main diagonal! lat <- rnorm(n) long <- rnorm(n) W <- kNearestNeighbors(lat, long, k=6) # innovations eps <- rnorm(n=n, mean=0, sd=1) # generate data from model S <- I_n - rho * W z <- solve(qr(S), X %*% beta + eps) y <- as.vector(z >= 0) # 0 or 1, FALSE or TRUE # estimate SAR probit model fit1 <- sar_probit_mcmc(y, X, W, ndraw=100, thinning=1, prior=NULL) plot(fit1, which=c(1,3), trueparam = c(beta, rho))