sartobit function

Bayesian estimation of the SAR Tobit model

Bayesian estimation of the SAR Tobit model

Bayesian estimation of the spatial autoregressive Tobit model (SAR Tobit model).

sartobit(formula, W, data, ...) sar_tobit_mcmc(y, X, W, ndraw = 1000, burn.in = 100, thinning = 1, prior=list(a1=1, a2=1, c=rep(0, ncol(X)), T=diag(ncol(X))*1e12, lflag = 0), start = list(rho = 0.75, beta = rep(0, ncol(X)), sige = 1), m=10, computeMarginalEffects=FALSE, showProgress=FALSE)

Arguments

  • y: dependent variables. vector of zeros and ones

  • X: design matrix

  • W: spatial weight matrix

  • ndraw: number of MCMC iterations

  • burn.in: number of MCMC burn-in to be discarded

  • thinning: MCMC thinning factor, defaults to 1.

  • prior: A list of prior settings for orrho Beta(a1,a2)or rho ~ Beta(a1,a2)

    and beta N(c,T)beta ~ N(c,T). Defaults to diffuse prior for beta.

  • start: list of start values

  • m: Number of burn-in samples in innermost Gibbs sampler. Defaults to 10.

  • computeMarginalEffects: Flag if marginal effects are calculated. Defaults to FALSE. We recommend to enable it only when sample size is small.

  • showProgress: Flag if progress bar should be shown. Defaults to FALSE.

  • formula: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.

  • data: an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which sarprobit is called.

  • ...: additional arguments to be passed

Details

Bayesian estimates of the spatial autoregressive Tobit model (SAR Tobit model)

z=ρWy+Xβ+ϵ,ϵN(0,σe2In)z=rhoWy+Xbeta+e,e N(0,sigeIn) z = \rho W y + X \beta + \epsilon, \epsilon \sim N(0, \sigma^2_{e} I_n)z = rho*W*y + X*beta + e, e ~ N(0,sige*I_n) z=(InρW)1Xβ+(InρW)1\epsilonz=(InrhoW)1Xbeta+(InrhoW)1e z = (I_n - \rho W)^{-1} X \beta + (I_n - \rho W)^{-1} \epsilonz = (I_n - rho W)^{-1} X beta + (I_n - rho W)^{-1} e y=max(z,0) y = max(z, 0)

where yy (nx1)(n x 1) is only observed for z>=0z >= 0 and censored to 0 otherwise. betabeta is a (kx1)(k x 1)

vector of parameters associated with the (nxk)(n x k) data matrix X.

The prior distributions are beta N(c,T)beta ~ N(c,T)

and rho Uni(rmin,rmax)rho ~ Uni(rmin,rmax)

or orrho Beta(a1,a2)or rho ~ Beta(a1,a2).

Returns

Returns a structure of class sartobit:

  • beta: posterior mean of bhat based on draws

  • rho: posterior mean of rho based on draws

  • bdraw: beta draws (ndraw-nomit x nvar)

  • pdraw: rho draws (ndraw-nomit x 1)

  • sdraw: sige draws (ndraw-nomit x 1)

  • total: a matrix (ndraw,nvars-1) total x-impacts

  • direct: a matrix (ndraw,nvars-1) direct x-impacts

  • indirect: a matrix (ndraw,nvars-1) indirect x-impacts

  • rdraw: r draws (ndraw-nomit x 1) (if m,k input)

  • nobs: # of observations

  • nvar: # of variables in x-matrix

  • ndraw: # of draws

  • nomit: # of initial draws omitted

  • nsteps: # of samples used by Gibbs sampler for TMVN

  • y: y-vector from input (nobs x 1)

  • zip: # of zero y-values

  • a1: a1 parameter for beta prior on rho from input, or default value

  • a2: a2 parameter for beta prior on rho from input, or default value

  • time: total time taken

  • rmax: 1/max eigenvalue of W (or rmax if input)

  • rmin: 1/min eigenvalue of W (or rmin if input)

  • tflag: 'plevel' (default) for printing p-levels; 'tstat' for printing bogus t-statistics

  • lflag: lflag from input

  • cflag: 1 for intercept term, 0 for no intercept term

  • lndet: a matrix containing log-determinant information (for use in later function calls to save time)

References

LeSage, J. and Pace, R. K. (2009), Introduction to Spatial Econometrics, CRC Press, chapter 10, section 10.3, 299--304

Author(s)

adapted to and optimized for R by Stefan Wilhelm wilhelm@financial.com based on Matlab code from James P. LeSage

See Also

sarprobit, sarorderedprobit or semprobit

for SAR probit/SAR Ordered Probit/ SEM probit model fitting

Examples

# Example from LeSage/Pace (2009), section 10.3.1, p. 302-304 # Value of "a" is not stated in book! # Assuming a=-1 which gives approx. 50% censoring library(spatialprobit) a <- -1 # control degree of censored observation n <- 1000 rho <- 0.7 beta <- c(0, 2) sige <- 0.5 I_n <- sparseMatrix(i=1:n, j=1:n, x=1) x <- runif(n, a, 1) X <- cbind(1, x) eps <- rnorm(n, sd=sqrt(sige)) param <- c(beta, sige, rho) # random locational coordinates and 6 nearest neighbors lat <- rnorm(n) long <- rnorm(n) W <- kNearestNeighbors(lat, long, k=6) y <- as.double(solve(I_n - rho * W) %*% (X %*% beta + eps)) table(y > 0) # full information yfull <- y # set negative values to zero to reflect sample truncation ind <- which(y <=0) y[ind] <- 0 # Fit SAR (with complete information) fit_sar <- sartobit(yfull ~ X-1, W,ndraw=1000,burn.in=200, showProgress=FALSE) summary(fit_sar) # Fit SAR Tobit (with approx. 50% censored observations) fit_sartobit <- sartobit(y ~ x,W,ndraw=1000,burn.in=200, showProgress=TRUE) par(mfrow=c(2,2)) for (i in 1:4) { ylim1 <- range(fit_sar$B[,i], fit_sartobit$B[,i]) plot(fit_sar$B[,i], type="l", ylim=ylim1, main=fit_sartobit$names[i], col="red") lines(fit_sartobit$B[,i], col="green") legend("topleft", legend=c("SAR", "SAR Tobit"), col=c("red", "green"), lty=1, bty="n") } # Fit SAR Tobit (with approx. 50% censored observations) fit_sartobit <- sartobit(y ~ x,W,ndraw=1000,burn.in=0, showProgress=TRUE, computeMarginalEffects=TRUE) # Print SAR Tobit marginal effects impacts(fit_sartobit) #--------Marginal Effects-------- # #(a) Direct effects # lower_005 posterior_mean upper_095 #x 1.013 1.092 1.176 # #(b) Indirect effects # lower_005 posterior_mean upper_095 #x 2.583 2.800 3.011 # #(c) Total effects # lower_005 posterior_mean upper_095 #x 3.597 3.892 4.183 #mfx <- marginal.effects(fit_sartobit)