spatstat.linnet3.4-0 package

Linear Networks Functionality of the 'spatstat' Family

Package nameVersionTitleDateSizeLicense
spatstat.linnet
3.4-0
Linear Networks Functionality of the 'spatstat' FamilySat Nov 29 2025323.03kBGPL (>= 2)
spatstat.linnet
3.3-2
Linear Networks Functionality of the 'spatstat' FamilyWed Sep 24 2025285.52kBGPL (>= 2)
spatstat.linnet
3.3-1
Linear Networks Functionality of the 'spatstat' FamilyThu Jul 24 2025285.23kBGPL (>= 2)
spatstat.linnet
3.2-6
Linear Networks Functionality of the 'spatstat' FamilyFri May 23 2025278.39kBGPL (>= 2)
spatstat.linnet
3.2-5
Linear Networks Functionality of the 'spatstat' FamilyWed Jan 22 2025278.61kBGPL (>= 2)
spatstat.linnet
3.2-3
Linear Networks Functionality of the 'spatstat' FamilyTue Nov 19 2024277.83kBGPL (>= 2)
spatstat.linnet
3.2-2
Linear Networks Functionality of the 'spatstat' FamilyFri Sep 20 2024276.28kBGPL (>= 2)
spatstat.linnet
3.2-1
Linear Networks Functionality of the 'spatstat' FamilyMon Jul 15 2024276.19kBGPL (>= 2)
spatstat.linnet
3.1-5
Linear Networks Functionality of the 'spatstat' FamilyMon Mar 25 2024272.76kBGPL (>= 2)
spatstat.linnet
3.1-4
Linear Networks Functionality of the 'spatstat' FamilySun Feb 04 2024272.66kBGPL (>= 2)
spatstat.linnet
3.1-3
Linear Networks Functionality of the 'spatstat' FamilySat Oct 28 2023268.44kBGPL (>= 2)
spatstat.linnet
3.1-1
Linear Networks Functionality of the 'spatstat' FamilyMon May 15 2023268.15kBGPL (>= 2)
spatstat.linnet
3.1-0
Linear Networks Functionality of the 'spatstat' FamilyFri Apr 14 2023267.71kBGPL (>= 2)
spatstat.linnet
3.0-6
Linear Networks Functionality of the 'spatstat' FamilyWed Feb 22 2023264.72kBGPL (>= 2)
spatstat.linnet
3.0-4
Linear Networks Functionality of the 'spatstat' FamilyFri Jan 27 2023263.86kBGPL (>= 2)
spatstat.linnet
3.0-3
Linear Networks Functionality of the 'spatstat' FamilyTue Nov 15 2022263.33kBGPL (>= 2)
spatstat.linnet
3.0-2
Linear Networks Functionality of the 'spatstat' FamilyWed Nov 09 2022263.24kBGPL (>= 2)
spatstat.linnet
2.3-2
Linear Networks Functionality of the 'spatstat' FamilyWed Feb 16 2022241.66kBGPL (>= 2)
spatstat.linnet
2.3-1
Linear Networks Functionality of the 'spatstat' FamilySat Dec 11 2021241.51kBGPL (>= 2)
spatstat.linnet
2.3-0
Linear Networks Functionality of the 'spatstat' FamilySat Jul 17 2021239.96kBGPL (>= 2)
spatstat.linnet
2.2-1
Linear Networks Functionality of the 'spatstat' FamilyTue Jun 22 2021233.22kBGPL (>= 2)
spatstat.linnet
2.1-1
Linear Networks Functionality of the 'spatstat' FamilySun Mar 28 2021233.28kBGPL (>= 2)
spatstat.linnet
2.0-0
Linear Networks Functionality of the 'spatstat' FamilyThu Mar 18 2021231.15kBGPL (>= 2)
spatstat.linnet
1.65-3
Linear Networks Functionality of the 'spatstat' PackageFri Feb 05 2021229.09kBGPL (>= 2)

Defines types of spatial data on a linear network and provides functionality for geometrical operations, data analysis and modelling of data on a linear network, in the 'spatstat' family of packages. Contains definitions and support for linear networks, including creation of networks, geometrical measurements, topological connectivity, geometrical operations such as inserting and deleting vertices, intersecting a network with another object, and interactive editing of networks. Data types defined on a network include point patterns, pixel images, functions, and tessellations. Exploratory methods include kernel estimation of intensity on a network, K-functions and pair correlation functions on a network, simulation envelopes, nearest neighbour distance and empty space distance, relative risk estimation with cross-validated bandwidth selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. Parametric models can be fitted to point pattern data using the function lppm() similar to glm(). Only Poisson models are implemented so far. Models may involve dependence on covariates and dependence on marks. Models are fitted by maximum likelihood. Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots. Random point patterns on a network can be generated using a variety of models.

  • Maintainer: Adrian Baddeley
  • License: GPL (>= 2)
  • Last published: 2025-11-29