lee function

Compute Lee's statistic

Compute Lee's statistic

A simple function to compute Lee's L statistic for bivariate spatial data;

[REMOVE_ME]L(x,y)=ni=1n(j=1nwij)2i=1n(j=1nwij(xixˉ))((j=1nwij(yjyˉ))i=1n(xixˉ)2i=1n(yiyˉ)2L(x,y)=(nsumi(sumjwij(xixbar))(sumjwij(yjybar)))/(S2sqrt(sumi(xixbar)2))sqrt(sumi(xixbar)2))[REMOVEME2] L(x,y) = \frac{n}{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij})^2}\frac{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})) ((\sum_{j=1}^{n}w_{ij}(y_j-\bar{y}))}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}L(x,y) = (n sum_i (sum_j w_ij (x_i - xbar)) (sum_j w_ij (y_j - ybar))) / (S2 sqrt(sum_i (x_i - xbar)^2)) sqrt(sum_i (x_i - xbar)^2)) [REMOVE_ME_2] latin1

Description

A simple function to compute Lee's L statistic for bivariate spatial data;

L(x,y)=ni=1n(j=1nwij)2i=1n(j=1nwij(xixˉ))((j=1nwij(yjyˉ))i=1n(xixˉ)2i=1n(yiyˉ)2L(x,y)=(nsumi(sumjwij(xixbar))(sumjwij(yjybar)))/(S2sqrt(sumi(xixbar)2))sqrt(sumi(xixbar)2)) L(x,y) = \frac{n}{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij})^2}\frac{\sum_{i=1}^{n}(\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})) ((\sum_{j=1}^{n}w_{ij}(y_j-\bar{y}))}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}L(x,y) = (n sum_i (sum_j w_ij (x_i - xbar)) (sum_j w_ij (y_j - ybar))) / (S2 sqrt(sum_i (x_i - xbar)^2)) sqrt(sum_i (x_i - xbar)^2))
lee(x, y, listw, n, S2, zero.policy=attr(listw, "zero.policy"), NAOK=FALSE)

Arguments

  • x: a numeric vector the same length as the neighbours list in listw
  • y: a numeric vector the same length as the neighbours list in listw
  • listw: a listw object created for example by nb2listw
  • n: number of zones
  • S2: Sum of squared sum of weights by rows.
  • zero.policy: default attr(listw, "zero.policy") as set when listw was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
  • NAOK: if 'TRUE' then any 'NA' or 'NaN' or 'Inf' values in x are passed on to the foreign function. If 'FALSE', the presence of 'NA' or 'NaN' or 'Inf' values is regarded as an error.

Returns

a list of - L: Lee's L statistic

  • local L: Lee's local L statistic

References

Lee (2001). Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I. J Geograph Syst 3: 369-385

Author(s)

Roger Bivand and Virgiio Gómez-Rubio Virgilio.Gomez@uclm.es

See Also

lee.mc

Examples

data(boston, package="spData") lw<-nb2listw(boston.soi) x<-boston.c$CMEDV y<-boston.c$CRIM z<-boston.c$RAD Lxy<-lee(x, y, lw, length(x), zero.policy=TRUE) Lxz<-lee(x, z, lw, length(x), zero.policy=TRUE)