lm.morantest function

Moran's I test for residual spatial autocorrelation

Moran's I test for residual spatial autocorrelation

Moran's I test for spatial autocorrelation in residuals from an estimated linear model (lm()).

lm.morantest(model, listw, zero.policy=attr(listw, "zero.policy"), alternative = "greater", spChk=NULL, resfun=weighted.residuals, naSubset=TRUE)

Arguments

  • model: an object of class lm returned by lm; weights may be specified in the lm fit, but offsets should not be used
  • listw: a listw object created for example by nb2listw
  • zero.policy: default attr(listw, "zero.policy") as set when listw was created, if attribute not set, use global option value; if TRUE assign zero to the lagged value of zones without neighbours, if FALSE assign NA
  • alternative: a character string specifying the alternative hypothesis, must be one of "greater" (default), "less" or "two.sided".
  • spChk: should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()
  • resfun: default: weighted.residuals; the function to be used to extract residuals from the lm object, may be residuals, weighted.residuals, rstandard, or rstudent
  • naSubset: default TRUE to subset listw object for omitted observations in model object (this is a change from earlier behaviour, when the model$na.action component was ignored, and the listw object had to be subsetted by hand)

Returns

A list with class htest containing the following components: - statistic: the value of the standard deviate of Moran's I.

  • p.value: the p-value of the test.

  • estimate: the value of the observed Moran's I, its expectation and variance under the method assumption.

  • alternative: a character string describing the alternative hypothesis.

  • method: a character string giving the method used.

  • data.name: a character string giving the name(s) of the data.

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 203,

Author(s)

Roger Bivand Roger.Bivand@nhh.no

See Also

lm.LMtests, lm

Examples

data(oldcol) oldcrime1.lm <- lm(CRIME ~ 1, data = COL.OLD) oldcrime.lm <- lm(CRIME ~ HOVAL + INC, data = COL.OLD) lm.morantest(oldcrime.lm, nb2listw(COL.nb, style="W")) lm.LMtests(oldcrime.lm, nb2listw(COL.nb, style="W")) lm.morantest(oldcrime.lm, nb2listw(COL.nb, style="S")) lm.morantest(oldcrime1.lm, nb2listw(COL.nb, style="W")) moran.test(COL.OLD$CRIME, nb2listw(COL.nb, style="W"), randomisation=FALSE) oldcrime.wlm <- lm(CRIME ~ HOVAL + INC, data = COL.OLD, weights = I(1/AREA_PL)) lm.morantest(oldcrime.wlm, nb2listw(COL.nb, style="W"), resfun=weighted.residuals) lm.morantest(oldcrime.wlm, nb2listw(COL.nb, style="W"), resfun=rstudent)