This function implements a SKATER procedure for spatial clustering analysis. This procedure essentialy begins with an edges set, a data set and a number of cuts. The output is an object of 'skater' class and is valid for input again.
edges: A matrix with 2 colums with each row is an edge
data: A data.frame with data observed over nodes.
ncuts: The number of cuts
crit: A scalar or two dimensional vector with criteria for groups. Examples: limits of group size or limits of population size. If scalar, is the minimum criteria for groups.
vec.crit: A vector for evaluating criteria.
method: Character or function to declare distance method. If method is character, method must be "mahalanobis" or "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowisk". If method is one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski", see dist for details, because this function as used to compute the distance. If method="mahalanobis", the mahalanobis distance is computed between neighbour areas. If method is a function, this function is used to compute the distance.
p: The power of the Minkowski distance.
cov: The covariance matrix used to compute the mahalanobis distance.
inverted: logical. If 'TRUE', 'cov' is supposed to contain the inverse of the covariance matrix.
Returns
A object of skater class with:
groups: A vector with length equal the number of nodes. Each position identifies the group of node
edges.groups: A list of length equal the number of groups with each element is a set of edges
not.prune: A vector identifying the groups with are not candidates to partition.
candidates: A vector identifying the groups with are candidates to partition.
ssto: The total dissimilarity in each step of edge removal.
References
Assuncao, R.M., Lage J.P., and Reis, E.A. (2002). Analise de conglomerados espaciais via arvore geradora minima. Revista Brasileira de Estatistica, 62, 1-23.
Assuncao, R. M, Neves, M. C., Camara, G. and Freitas, C. da C. (2006). Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees. International Journal of Geographical Information Science Vol. 20, No. 7, August 2006, 797-811
Author(s)
Renato M. Assuncao and Elias T. Krainski
See Also
See Also as mstree
Examples
### loading data(GDAL37 <- as.numeric_version(unname(sf_extSoftVersion()["GDAL"]))>="3.7.0")file <-"etc/shapes/bhicv.gpkg.zip"zipfile <- system.file(file, package="spdep")if(GDAL37){ bh <- st_read(zipfile)}else{ td <- tempdir() bn <- sub(".zip","", basename(file), fixed=TRUE) target <- unzip(zipfile, files=bn, exdir=td) bh <- st_read(target)}### data standardized dim(bh)dpad <- data.frame(scale(as.data.frame(bh)[,5:8]))### neighboorhod listbh.nb <- poly2nb(bh)bh.nb
### calculating costslcosts <- nbcosts(bh.nb, dpad)head(lcosts)### making listwnb.w <- nb2listw(bh.nb, lcosts, style="B")nb.w
### find a minimum spanning treemst.bh <- mstree(nb.w,5)str(mst.bh)### the mstree plotpar(mar=c(0,0,0,0))plot(st_geometry(bh), border=gray(.5))pts <- st_coordinates(st_centroid(bh))plot(mst.bh, pts, col=2, cex.lab=.6, cex.circles=0.035, fg="blue", add=TRUE)### three groups with no restrictionres1 <- spdep::skater(edges=mst.bh[,1:2], data=dpad, ncuts=2)### groups sizetable(res1$groups)### the skater plotopar <- par(mar=c(0,0,0,0))plot(res1, pts, cex.circles=0.035, cex.lab=.7)### the skater plot, using other colorsplot(res1, pts, cex.circles=0.035, cex.lab=.7, groups.colors=heat.colors(length(res1$ed)))### the Spatial Polygons plotplot(st_geometry(bh), col=heat.colors(length(res1$edg))[res1$groups])#par(opar)### EXPERT OPTIONS### more one partitionres1b <- spdep::skater(res1, dpad,1)### length groups frequencytable(res1$groups)table(res1b$groups)### thee groups with minimum population res2 <- spdep::skater(mst.bh[,1:2], dpad,2,200000, bh$Pop)table(res2$groups)### thee groups with minimun number of areasres3 <- spdep::skater(mst.bh[,1:2], dpad,2,3, rep(1,nrow(bh)))table(res3$groups)### thee groups with minimun and maximun number of areasres4 <- spdep::skater(mst.bh[,1:2], dpad,2, c(20,50), rep(1,nrow(bh)))table(res4$groups)### if I want to get groups with 20 to 40 elementsres5 <- spdep::skater(mst.bh[,1:2], dpad,2, c(20,40), rep(1,nrow(bh)))## DON'T MAKE DIVISIONS table(res5$groups)### In this MST don't have groups with this restrictions### In this case, first I do one division### with the minimun criteriares5a <- spdep::skater(mst.bh[,1:2], dpad,1,20, rep(1,nrow(bh)))table(res5a$groups)### and do more one division with the full criteriares5b <- spdep::skater(res5a, dpad,1, c(20,40), rep(1,nrow(bh)))table(res5b$groups)### and do more one division with the full criteriares5c <- spdep::skater(res5b, dpad,1, c(20,40), rep(1,nrow(bh)))table(res5c$groups)### It don't have another divison with this criteriares5d <- spdep::skater(res5c, dpad,1, c(20,40), rep(1,nrow(bh)))table(res5d$groups)## Not run:data(boston, package="spData")bh.nb <- boston.soi
dpad <- data.frame(scale(boston.c[,c(7:10)]))### calculating costssystem.time(lcosts <- nbcosts(bh.nb, dpad))### making listwnb.w <- nb2listw(bh.nb, lcosts, style="B")### find a minimum spanning treemst.bh <- mstree(nb.w,5)### three groups with no restrictionsystem.time(res1 <- spdep::skater(mst.bh[,1:2], dpad,2))library(parallel)nc <- max(2L, detectCores(logical=FALSE), na.rm =TRUE)-1L# set nc to 1L hereif(nc >1L) nc <-1LcoresOpt <- get.coresOption()invisible(set.coresOption(nc))if(!get.mcOption()){# no-op, "snow" parallel calculation not available cl <- makeCluster(get.coresOption()) set.ClusterOption(cl)}### calculating costssystem.time(plcosts <- nbcosts(bh.nb, dpad))all.equal(lcosts, plcosts, check.attributes=FALSE)### making listwpnb.w <- nb2listw(bh.nb, plcosts, style="B")### find a minimum spanning treepmst.bh <- mstree(pnb.w,5)### three groups with no restrictionsystem.time(pres1 <- spdep::skater(pmst.bh[,1:2], dpad,2))if(!get.mcOption()){ set.ClusterOption(NULL) stopCluster(cl)}all.equal(res1, pres1, check.attributes=FALSE)invisible(set.coresOption(coresOpt))## End(Not run)