longlat: a dataframe contains longitude and latitude of point samples.
trainy: a vector of response, must have length equal to the number of rows in longlat.
cv.fold: integer; number of folds in the cross-validation. if > 1, then apply n-fold cross validation; the default is 10, i.e., 10-fold cross validation that is recommended.
nmax: for a local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used.
idp: numeric; specify the inverse distance weighting power.
predacc: can be either "VEcv" for vecv or "ALL" for all measures in function pred.acc.
...: other arguments passed on to gstat.
Returns
A list with the following components: me, rme, mae, rmae, mse, rmse, rrmse, vecv and e1; or vecv only.
Note
This function is largely based on rfcv in randomForest and some functions in library(gstat).
Examples
## Not run:library(sp)data(swmud)data(petrel)idwcv1 <- idwcv(swmud[, c(1,2)], swmud[,3], nmax =12, idp =2)idwcv1
n <-20# number of iterations, 60 to 100 is recommended.VEcv <-NULLfor(i in1:n){idwcv1 <- idwcv(petrel[, c(1,2)], petrel[,3], nmax =12, predacc ="VEcv")VEcv [i]<- idwcv1
}plot(VEcv ~ c(1:n), xlab ="Iteration for IDW", ylab ="VEcv (%)")points(cumsum(VEcv)/ c(1:n)~ c(1:n), col =2)abline(h = mean(VEcv), col ='blue', lwd=2)n <-20# number of iterations, 60 to 100 is recommended.measures <-NULLfor(i in1:n){idwcv1 <- idwcv(swmud[, c(1,2)], swmud[,3], predacc ="ALL")measures <- rbind(measures, idwcv1$vecv)}plot(measures ~ c(1:n), xlab ="Iteration for IDW", ylab="VEcv (%)")points(cumsum(measures)/ c(1:n)~ c(1:n), col =2)abline(h = mean(measures), col ='blue', lwd =2)## End(Not run)
References
Li, J., 2013. Predictive Modelling Using Random Forest and Its Hybrid Methods with Geostatistical Techniques in Marine Environmental Geosciences, In: Christen, P., Kennedy, P., Liu, L., Ong, K.-L., Stranieri, A., Zhao, Y. (Eds.), The proceedings of the Eleventh Australasian Data Mining Conference (AusDM 2013), Canberra, Australia, 13-15 November 2013. Conferences in Research and Practice in Information Technology, Vol. 146.
A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18-22.
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691.