rfpred function

Generate spatial predictions using random forest (RF)

Generate spatial predictions using random forest (RF)

This function is to make spatial predictions using random forest.

rfpred( trainx, trainy, longlatpredx, predx, mtry = if (!is.null(trainy) && !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else floor(sqrt(ncol(trainx))), ntree = 500, ... )

Arguments

  • trainx: a dataframe or matrix contains columns of predictor variables.
  • trainy: a vector of response, must have length equal to the number of rows in trainx.
  • longlatpredx: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.
  • predx: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.
  • mtry: a function of number of remaining predictor variables to use as the mtry parameter in the randomForest call.
  • ntree: number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times. By default, 500 is used.
  • ...: other arguments passed on to randomForest.

Returns

A dataframe of longitude, latitude and predictions.

Examples

## Not run: data(petrel) data(petrel.grid) rfpred1 <- rfpred(petrel[, c(1,2, 6:9)], petrel[, 5], petrel.grid[, c(1,2)], petrel.grid, ntree = 500) names(rfpred1) ## End(Not run)

References

Liaw, A. and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18-22.

Author(s)

Jin Li

  • Maintainer: Jin Li
  • License: GPL (>= 2)
  • Last published: 2022-05-06

Useful links