Generate spatial predictions using random forest in ranger (RG)
This function is to make spatial predictions using random forest in ranger.
rgpred( trainx, trainy, longlatpredx, predx, mtry = if (!is.null(trainy) && !is.factor(trainy)) max(floor(ncol(trainx)/3), 1) else floor(sqrt(ncol(trainx))), num.trees = 500, min.node.size = NULL, type = "response", num.threads = NULL, verbose = FALSE, ... )
trainx
: a dataframe or matrix contains columns of predictor variables.trainy
: a vector of response, must have length equal to the number of rows in trainx.longlatpredx
: a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted.predx
: a dataframe or matrix contains columns of predictive variables for the grids to be predicted.mtry
: Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.num.trees
: number of trees. By default, 500 is used.min.node.size
: Default 1 for classification, 5 for regression.type
: Type of prediction. One of 'response', 'se', 'terminalNodes' with default 'response'. See ranger::predict.ranger for details.num.threads
: number of threads. Default is number of CPUs available.verbose
: Show computation status and estimated runtime.Default is FALSE....
: other arguments passed on to randomForest.A dataframe of longitude, latitude and predictions.
This function is largely based on rfpred.
## Not run: data(petrel) data(petrel.grid) set.seed(1234) rgpred1 <- rgpred(petrel[, c(1,2, 6:9)], petrel[, 5], petrel.grid[, c(1,2)], petrel.grid, num.trees = 500) names(rgpred1) ## End(Not run)
Wright, M. N. & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J Stat Softw 77:1-17. http://dx.doi.org/10.18637/jss.v077.i01.
Jin Li
Useful links