sprnbinom function

Simulate a spatial negative binomial random variable

Simulate a spatial negative binomial random variable

Simulate a spatial negative binomial random variable with a specific mean and covariance structure.

sprnbinom( spcov_params, dispersion = 1, mean = 0, samples = 1, data, randcov_params, partition_factor, ... )

Arguments

  • spcov_params: An spcov_params() object.
  • dispersion: The dispersion value.
  • mean: A numeric vector representing the mean. mean must have length 1 (in which case it is recycled) or length equal to the number of rows in data. The default is 0.
  • samples: The number of independent samples to generate. The default is 1.
  • data: A data frame or sf object containing spatial information.
  • randcov_params: A randcov_params() object.
  • partition_factor: A formula indicating the partition factor.
  • ...: Additional arguments passed to sprnorm().

Returns

If samples is 1, a vector of random variables for each row of data

is returned. If samples is greater than one, a matrix of random variables is returned, where the rows correspond to each row of data and the columns correspond to independent samples.

Details

The values of spcov_params, mean, and randcov_params

are assumed to be on the link scale. They are used to simulate a latent normal (Gaussian) response variable using sprnorm(). This latent variable is the conditional mean used with dispersion to simulate a negative binomial random variable.

Examples

spcov_params_val <- spcov_params("exponential", de = 0.2, ie = 0.1, range = 1) sprnbinom(spcov_params_val, data = caribou, xcoord = x, ycoord = y) sprnbinom(spcov_params_val, samples = 5, data = caribou, xcoord = x, ycoord = y)
  • Maintainer: Michael Dumelle
  • License: GPL-3
  • Last published: 2025-03-12