Estimation and Prediction of Parameters of Various Soil Hydraulic Property Models
Creates Parameter Transformation and Backtransformation Rules for the ...
Goodness-of-fit and Information Criteria
Incomplete Beta Function
Generates an Initial Population of Transformed Soil Hydraulic Property...
Calculates the Isothermal Water Vapour Conductivity
Calculation of the Log-likelihood assuming Identially, Independenzly a...
Function to Numerically Compute the Mualem Integral
Title Corrected Weynants et al. (2009) Pedotransfer Function
Parameter Transfer Function for Weber et al.(2019) model.
Calculation of the Objective Function Value
Wrapper function for the Estimation of Soil Hydrologic Property Model ...
van Genuchten-Mualem Soil Hydraulic Proptery Model
van Genuchten-Mualem bimodal Soil Hydraulic Propterty Model
van Genuchten-Mualem trimodal Soil Hydraulic Propterty Model
Unimodal Kosugi-Mualem Model (2 Parameter Model)
Unimodal Fredlund-Xing - Mualem Model
Unimodal Brooks-Corey Model
Wrapper Function for all Supported Soil Hydraulic Property Models
Unimodal van Genuchten Non-Capillary Saturation Model
Unimodal Kosugi Non-Capillary Saturation Model
Unimodal Brooks-Corey Non-Capillary Saturation Model
Non-capillary Saturation Function to Extend Other Functions
spsh: Estimation and Prediction of Parameters of Various Soil Hydrauli...
Parameter Transformation and Back-transformation
Specification of Weights for the Data Groups Retention Data and Conduc...
Estimates model parameters of soil hydraulic property functions by inverting measured data. A wide range of hydraulic models, weighting schemes, global optimization algorithms, Markov chain Monte Carlo samplers, and extended statistical analyses of results are provided. Prediction of soil hydraulic property model parameters and common soil properties using pedotransfer functions is facilitated. Parameter estimation is based on identically and independentally distributed (weighted) model residuals, and simple model selection criteria (Hoege, M., Woehling, T., and Nowak, W. (2018) <doi:10.1002/2017WR021902>) can be calculated. The included models are the van Genuchten-Mualem in its unimodal, bimodal and trimodal form, the the Kosugi 2 parametric-Mualem model, and the Fredlund-Xing model. All models can be extended to account for non-capillary water storage and conductivity (Weber, T.K.D., Durner, W., Streck, T. and Diamantopoulos, E. (2019) <doi:10.1029/2018WR024584>. The isothermal vapour conductivity (Saito, H., Simunek, J. and Mohanty, B.P. (2006) <doi:10.2136/vzj2006.0007>) is calculated based on volumetric air space and a selection of different tortuosity models: (Grable, A.R., Siemer, E.G. (1968) <doi:10.2136/sssaj1968.03615995003200020011x>, Lai, S.H., Tiedje J.M., Erickson, E. (1976) <doi:10.2136/sssaj1976.03615995004000010006x>, Moldrup, P., Olesen, T., Rolston, D.E., and Yamaguchi, T. (1997) <doi:10.1097/00010694-199709000-00004>, Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., and Rolston, D.E. (2004) <doi:10.2136/sssaj2004.7500>, Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T., and Rolston, D.E. (2005) <doi:10.1097/01.ss.0000196768.44165.1f>, Millington, R.J., Quirk, J.P. (1961) <doi:10.1039/TF9615701200>, Penman, H.L. (1940) <doi:10.1017/S0021859600048164>, and Xu, X, Nieber, J.L. Gupta, S.C. (1992) <doi:10.2136/sssaj1992.03615995005600060014x>).