Change the parameters of a specific regime of the given parameter vector
Change the parameters of a specific regime of the given parameter vector
change_regime changes the regime parameters (ϕm,0,vec(Am,1),...,(Am,p),vech(Ωm)) (replace vech(Ωm)
by vec(Bm) for cond_dist="ind_Student") of the given regime to the new given parameters.
change_regime( p, M, d, params, m, regime_pars, cond_dist = c("Gaussian","Student","ind_Student","ind_skewed_t"))
Arguments
p: the autoregressive order of the model
M: the number of regimes
d: the number of time series in the system, i.e., the dimension
params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν), where (see exceptions below):
ϕm,0= the (d×1) intercept (or mean) vector of the mth regime.
φm=(vec(Am,1),...,vec(Am,p))(pd2×1).
if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))
$(Md(d + 1)/2 \times 1)$.
if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)(Md2×1).
α= the (a×1) vector containing the transition weight parameters (see below).
if cond_dist = "Gaussian"):: Omit ν from the parameter vector.
if cond_dist="Student":: ν2 is the single degrees of freedom parameter.
if cond_dist="ind_Student":: ν=(ν1,...,νd)(d×1), νi2.
if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)(2d×1), νi2 and λi∈(0,1).
$(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
weight_function="logistic":: α=(c,γ)
$(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
weight_function="mlogit":: α=(γ1,...,γM)((M−1)k×1), where γm(k×1), m=1,...,M−1 contains the multinomial logit-regression coefficients of the mth regime. Specifically, for switching variables with indices in I⊂{1,...,d}, and with p~∈{1,...,p} lags included, γm contains the coefficients for the vector zt−1=(1,z~min{I},...,z~max{I}), where z~i=(yit−1,...,yit−p~), i∈I. So k=1+∣I∣p~
where $|I|$ denotes the number of elements in $I$.
weight_function="exponential":: α=(c,γ)
$(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
weight_function="threshold":: α=(r1,...,rM−1)
$(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the threshold values.
weight_function="exogenous":: Omit α from the parameter vector.
identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM), where W(d×d) and λm(d×1), m=2,...,M, satisfy Ω1=WW′ and Ωm=WΛmW′, Λm=diag(λm1,...,λmd), λmi>0, m=2,...,M, i=1,...,d.
Above, ϕm,0 is the intercept parameter, Am,i denotes the ith coefficient matrix of the mth regime, Ωm denotes the positive definite error term covariance matrix of the mth regime, and Bm
is the invertible (d×d) impact matrix of the mth regime. νm is the degrees of freedom parameter of the mth regime. If parametrization=="mean", just replace each ϕm,0 with regimewise mean μm.
m: which regime?
regime_pars: - If cond_dist="Gaussian" or cond_dist="Student":: rhe (dp+pd2+d(d+1)/2) vector (ϕm,0,vec(Am,1),...,(Am,p),vech(Ωm)).
If cond_dist="ind_Student" or "ind_skewed_t":: the (dp+pd2+d2+1) vector (ϕm,0,vec(Am,1),...,(Am,p),vec(Bm)).
Returns
Returns parameter vector with m:th regime changed to regime_pars.
Details
Does not support constrained models or structural models. Weight parameters and distribution parameters are not changed.
References
Kheifets I.L., Saikkonen P.J. 2020. Stationarity and ergodicity of Vector STAR models. Econometric Reviews, 39 :4, 407-414.
Lütkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.
Lanne M., Virolainen S. 2025. A Gaussian smooth transition vector autoregressive model: An application to the macroeconomic effects of severe weather shocks. Unpublished working paper, available as arXiv:2403.14216.
Virolainen S. 2025. Identification by non-Gaussianity in structural threshold and smooth transition vector autoregressive models. Unpublished working paper, available as arXiv:2404.19707.