check_params function

Check whether the parameter vector is in the parameter space and throw error if not

Check whether the parameter vector is in the parameter space and throw error if not

check_params checks whether the parameter vector is in the parameter space.

check_params( data, p, M, d, params, weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold", "exogenous"), weightfun_pars = NULL, cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t"), parametrization = c("intercept", "mean"), identification = c("reduced_form", "recursive", "heteroskedasticity", "non-Gaussianity"), AR_constraints = NULL, mean_constraints = NULL, weight_constraints = NULL, B_constraints = NULL, transition_weights, allow_unstab = FALSE, stab_tol = 0.001, posdef_tol = 1e-08, distpar_tol = 1e-08, weightpar_tol = 1e-08 )

Arguments

  • data: a matrix or class 'ts' object with d>1 columns. Each column is taken to represent a univariate time series. Missing values are not supported.

  • p: a positive integer specifying the autoregressive order

  • M: a positive integer specifying the number of regimes

  • d: the number of time series in the system, i.e., the dimension

  • params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν)\theta = (\phi_{1,0},...,\phi_{M,0},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu), where (see exceptions below):

    • ϕm,0=\phi_{m,0} = the (d×1)(d \times 1) intercept (or mean) vector of the mmth regime.
    • φm=(vec(Am,1),...,vec(Am,p))\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p})) (pd2×1)(pd^2 \times 1).
      • if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))\sigma = (vech(\Omega_1),...,vech(\Omega_M))

          $(Md(d + 1)/2 \times 1)$.
        
      • if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)\sigma = (vec(B_1),...,vec(B_M) (Md2×1)(Md^2 \times 1).

    • α=\alpha = the (a×1)(a\times 1) vector containing the transition weight parameters (see below).
      • if cond_dist = "Gaussian"):: Omit ν\nu from the parameter vector.
      • if cond_dist="Student":: ν2\nu \> 2 is the single degrees of freedom parameter.
      • if cond_dist="ind_Student":: ν=(ν1,...,νd)\nu = (\nu_1,...,\nu_d) (d×1)(d \times 1), νi2\nu_i \> 2.
      • if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d) (2d×1)(2d \times 1), νi2\nu_i \> 2 and λi(0,1)\lambda_i \in (0, 1).

    For models with...

    • weight_function="relative_dens":: α=(α1,...,αM1)\alpha = (\alpha_1,...,\alpha_{M-1})

        $(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
      
    • weight_function="logistic":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="mlogit":: α=(γ1,...,γM)\alpha = (\gamma_1,...,\gamma_M) ((M1)k×1)((M-1)k\times 1), where γm\gamma_m (k×1)(k\times 1), m=1,...,M1m=1,...,M-1 contains the multinomial logit-regression coefficients of the mmth regime. Specifically, for switching variables with indices in I{1,...,d}I\subset\lbrace 1,...,d\rbrace, and with p~{1,...,p}\tilde{p}\in\lbrace 1,...,p\rbrace lags included, γm\gamma_m contains the coefficients for the vector zt1=(1,z~min{I},...,z~max{I})z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where z~i=(yit1,...,yitp~)\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}}), iIi\in I. So k=1+Ip~k=1+|I|\tilde{p}

       where $|I|$ denotes the number of elements in $I$.
      
    • weight_function="exponential":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="threshold":: α=(r1,...,rM1)\alpha = (r_1,...,r_{M-1})

        $(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the thresholds.
      
    • weight_function="exogenous":: Omit α\alpha from the parameter vector.

    • AR_constraints:: Replace φ1,...,φM\varphi_1,...,\varphi_M with ψ\psi as described in the argument AR_constraints.

    • mean_constraints:: Replace ϕ1,0,...,ϕM,0\phi_{1,0},...,\phi_{M,0} with (μ1,...,μg)(\mu_{1},...,\mu_{g}) where μi, (d×1)\mu_i, \ (d\times 1) is the mean parameter for group ii and gg is the number of groups.

    • weight_constraints:: If linear constraints are imposed, replace α\alpha with ξ\xi as described in the argument weigh_constraints. If weight functions parameters are imposed to be fixed values, simply drop α\alpha

       from the parameter vector.
      
    • identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM)\sigma = (vec(W),\lambda_2,...,\lambda_M), where WW (d×d)(d\times d) and λm\lambda_m (d×1)(d\times 1), m=2,...,Mm=2,...,M, satisfy Ω1=WW\Omega_1=WW' and Ωm=WΛmW\Omega_m=W\Lambda_mW', Λm=diag(λm1,...,λmd)\Lambda_m=diag(\lambda_{m1},...,\lambda_{md}), λmi>0\lambda_{mi}>0, m=2,...,Mm=2,...,M, i=1,...,di=1,...,d.

    • B_constraints:: For models identified by heteroskedasticity, replace vec(W)vec(W) with vec~(W)\tilde{vec}(W)

       that stacks the columns of the matrix $W$ in to vector so that the elements that are constrained to zero are not included. For models identified by non-Gaussianity, replace $vec(B_1),...,vec(B_M)$ with similarly with vectorized versions $B_m$ so that the elements that are constrained to zero are not included.
      

    Above, ϕm,0\phi_{m,0} is the intercept parameter, Am,iA_{m,i} denotes the iith coefficient matrix of the mmth regime, Ωm\Omega_{m} denotes the positive definite error term covariance matrix of the mmth regime, and BmB_m

    is the invertible (d×d)(d\times d) impact matrix of the mmth regime. νm\nu_m is the degrees of freedom parameter of the mmth regime. If parametrization=="mean", just replace each ϕm,0\phi_{m,0} with regimewise mean μm\mu_{m}. vec()vec() is vectorization operator that stacks columns of a given matrix into a vector. vech()vech() stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. Bvec()Bvec()

    is a vectorization operator that stacks the columns of a given impact matrix BmB_m into a vector so that the elements that are constrained to zero by the argument B_constraints are excluded.

  • weight_function: What type of transition weights αm,t\alpha_{m,t} should be used?

    • "relative_dens":: c("alpham,t=\n\\alpha_{m,t}=\n", "fracalphamfm,dp(yt1,...,ytp+1)sumn=1Malphanfn,dp(yt1,...,ytp+1) \\frac{\\alpha_mf_{m,dp}(y_{t-1},...,y_{t-p+1})}{\\sum_{n=1}^M\\alpha_nf_{n,dp}(y_{t-1},...,y_{t-p+1})}"), where αm(0,1)\alpha_m\in (0,1) are weight parameters that satisfy m=1Mαm=1\sum_{m=1}^M\alpha_m=1 and fm,dp()f_{m,dp}(\cdot) is the dpdp-dimensional stationary density of the mmth regime corresponding to pp

       consecutive observations. Available for Gaussian conditional distribution only.
      
    • "logistic":: M=2M=2, α1,t=1α2,t\alpha_{1,t}=1-\alpha_{2,t}, and α2,t=[1+exp{γ(yitjc)}]1\alpha_{2,t}=[1+\exp\lbrace -\gamma(y_{it-j}-c) \rbrace]^{-1}, where yitjy_{it-j} is the lag jj

       observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
      
    • "mlogit":: c("alpham,t=fracexplbracegammamzt1rbrace\n\\alpha_{m,t}=\\frac{\\exp\\lbrace \\gamma_m'z_{t-1} \\rbrace}\n", "sumn=1Mexplbracegammanzt1rbrace {\\sum_{n=1}^M\\exp\\lbrace \\gamma_n'z_{t-1} \\rbrace}"), where γm\gamma_m are coefficient vectors, γM=0\gamma_M=0, and zt1z_{t-1} (k×1)(k\times 1) is the vector containing a constant and the (lagged) switching variables.

    • "exponential":: M=2M=2, α1,t=1α2,t\alpha_{1,t}=1-\alpha_{2,t}, and α2,t=1exp{γ(yitjc)}\alpha_{2,t}=1-\exp\lbrace -\gamma(y_{it-j}-c) \rbrace, where yitjy_{it-j} is the lag jj

       observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
      
    • "threshold":: αm,t=1\alpha_{m,t} = 1 if rm1<yitjrmr_{m-1}<y_{it-j}\leq r_{m} and 00 otherwise, where r0<r1<<rM1<rM-\infty\equiv r_0<r_1<\cdots <r_{M-1}<r_M\equiv\infty are thresholds yitjy_{it-j} is the lag jj

       observation of the $i$th variable.
      
    • "exogenous":: Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.

    See the vignette for more details about the weight functions.

  • weightfun_pars: - If weight_function == "relative_dens":: Not used.

    • If weight_function %in% c("logistic", "exponential", "threshold"):: a numeric vector with the switching variable i{1,...,d}i\in\lbrace 1,...,d \rbrace in the first and the lag j{1,...,p}j\in\lbrace 1,...,p \rbrace in the second element.

    • If weight_function == "mlogit":: a list of two elements:

       - **The first element `$vars`:**: a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in $\lbrace 1,...,d \rbrace$.
       - **The second element `$lags`:**: an integer in $\lbrace 1,...,p \rbrace$ specifying the number of lags to be used in the weight function.
      
    • If weight_function == "exogenous":: a size (nrow(data) - p x M) matrix containing the exogenous transition weights as [t, m] for time tt and regime mm. Each row needs to sum to one and only weakly positive values are allowed.

  • cond_dist: specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student", or "ind_skewed_t", where "ind_Student" the Student's tt distribution with independent components, and "ind_skewed_t" is the skewed tt distribution with independent components (see Hansen, 1994).

  • parametrization: "intercept" or "mean" determining whether the model is parametrized with intercept parameters ϕm,0\phi_{m,0} or regime means μm\mu_{m}, m=1,...,M.

  • identification: is it reduced form model or an identified structural model; if the latter, how is it identified (see the vignette or the references for details)?

    • "reduced_form":: Reduced form model.
    • "recursive":: The usual lower-triangular recursive identification of the shocks via their impact responses.
    • "heteroskedasticity":: Identification by conditional heteroskedasticity, which imposes constant relative impact responses for each shock.
    • "non-Gaussianity":: Identification by non-Gaussianity; requires mutually independent non-Gaussian shocks, thus, currently available only with the conditional distribution "ind_Student".
  • AR_constraints: a size (Mpd2×q)(Mpd^2 \times q) constraint matrix CC specifying linear constraints to the autoregressive parameters. The constraints are of the form (φ1,...,φM)=Cψ(\varphi_{1},...,\varphi_{M}) = C\psi, where φm=(vec(Am,1),...,vec(Am,p)) (pd2×1), m=1,...,M\varphi_{m} = (vec(A_{m,1}),...,vec(A_{m,p})) \ (pd^2 \times 1),\ m=1,...,M, contains the coefficient matrices and ψ\psi (q×1)(q \times 1) contains the related parameters. For example, to restrict the AR-parameters to be the identical across the regimes, set C=C =

    [I:...:I]' (Mpd2×pd2)(Mpd^2 \times pd^2) where I = diag(p*d^2).

  • mean_constraints: Restrict the mean parameters of some regimes to be identical? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if M=3, the argument list(1, 2:3) restricts the mean parameters of the second and third regime to be identical but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when parametrization="mean".

  • weight_constraints: a list of two elements, RR in the first element and rr in the second element, specifying linear constraints on the transition weight parameters α\alpha. The constraints are of the form α=Rξ+r\alpha = R\xi + r, where RR is a known (a×l)(a\times l)

    constraint matrix of full column rank (aa is the dimension of α\alpha), rr is a known (a×1)(a\times 1) constant, and ξ\xi is an unknown (l×1)(l\times 1) parameter. Alternatively , set R=0R=0 to constrain the weight parameters to the constant rr (in this case, α\alpha is dropped from the constrained parameter vector).

  • B_constraints: a (d×d)(d \times d) matrix with its entries imposing constraints on the impact matrix BtB_t: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero. Currently only available for models with identification="heteroskedasticity" or "non-Gaussianity" due to the (in)availability of appropriate parametrizations that allow such constraints to be imposed.

  • transition_weights: (optional; only for models with cond_dist="ind_Student" or identification="non-Gaussianity") A T×MT \times M matrix containing the transition weights. If cond_dist="ind_Student" checks that the impact matrix m=1Mαm,t1/2Bm\sum_{m=1}^M\alpha_{m,t}^{1/2}B_m is invertible for all t=1,...,Tt=1,...,T.

  • allow_unstab: If TRUE, estimates not satisfying the stability condition are allowed. Always FALSE if weight_function="relative_dens".

  • stab_tol: numerical tolerance for stability of condition of the regimes: if the "bold A" matrix of any regime has eigenvalues larger that 1 - stat_tol the parameter is considered to be outside the parameter space. Note that if tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

  • posdef_tol: numerical tolerance for positive definiteness of the error term covariance matrices: if the error term covariance matrix of any regime has eigenvalues smaller than this, the parameter is considered to be outside the parameter space. Note that if the tolerance is too small, numerical evaluation of the log-likelihood might fail and cause error.

  • distpar_tol: the parameter vector is considered to be outside the parameter space if the degrees of freedom parameters is not larger than 2 + distpar_tol (applies only if cond_dist="Student").

  • weightpar_tol: numerical tolerance for weight parameters being in the parameter space. Values closer to to the border of the parameter space than this are considered to be "outside" the parameter space.

Returns

Throws an informative error if there is something wrong with the parameter vector.

Examples

# There examples will cause an informative error params112_notpd <- c(6.5e-01, 7.0e-01, 2.9e-01, 2.0e-02, -1.4e-01, 9.0e-01, 6.0e-01, -1.0e-02, 1.0e-07) try(check_params(p=1, M=1, d=2, params=params112_notpd)) params112_notstat <- c(6.5e-01, 7.0e-01, 10.9e-01, 2.0e-02, -1.4e-01, 9.0e-01, 6.0e-01, -1.0e-02, 1.0e-07) try(check_params(p=1, M=1, d=2, params=params112_notstat)) params112_wronglength <- c(6.5e-01, 7.0e-01, 2.9e-01, 2.0e-02, -1.4e-01, 9.0e-01, 6.0e-01, -1.0e-02) try(check_params(p=1, M=1, d=2, params=params112_wronglength))

References

  • Kheifets I.L., Saikkonen P.J. 2020. Stationarity and ergodicity of Vector STAR models. Econometric Reviews, 39 :4, 407-414.
  • Lütkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.
  • Lanne M., Virolainen S. 2025. A Gaussian smooth transition vector autoregressive model: An application to the macroeconomic effects of severe weather shocks. Unpublished working paper, available as arXiv:2403.14216.
  • Virolainen S. 2025. Identification by non-Gaussianity in structural threshold and smooth transition vector autoregressive models. Unpublished working paper, available as arXiv:2404.19707.

@keywords internal

  • Maintainer: Savi Virolainen
  • License: GPL-3
  • Last published: 2025-02-27