data: a matrix or class 'ts' object with d>1 columns. Each column is taken to represent a univariate time series. Missing values are not supported.
p: a positive integer specifying the autoregressive order
M: a positive integer specifying the number of regimes
weight_function: What type of transition weights αm,t should be used?
"relative_dens":: c("alpham,t=\n", "fracalphamfm,dp(yt−1,...,yt−p+1)sumn=1Malphanfn,dp(yt−1,...,yt−p+1)"), where αm∈(0,1) are weight parameters that satisfy ∑m=1Mαm=1 and fm,dp(⋅) is the dp-dimensional stationary density of the mth regime corresponding to p
consecutive observations. Available for Gaussian conditional distribution only.
"logistic":: M=2, α1,t=1−α2,t, and α2,t=[1+exp{−γ(yit−j−c)}]−1, where yit−j is the lag j
observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
"mlogit":: c("alpham,t=fracexplbracegammam′zt−1rbrace\n", "sumn=1Mexplbracegamman′zt−1rbrace"), where γm are coefficient vectors, γM=0, and zt−1(k×1) is the vector containing a constant and the (lagged) switching variables.
"exponential":: M=2, α1,t=1−α2,t, and α2,t=1−exp{−γ(yit−j−c)}, where yit−j is the lag j
observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
"threshold":: αm,t=1 if rm−1<yit−j≤rm and 0 otherwise, where −∞≡r0<r1<⋯<rM−1<rM≡∞ are thresholds yit−j is the lag j
observation of the $i$th variable.
"exogenous":: Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.
See the vignette for more details about the weight functions.
weightfun_pars: - If weight_function == "relative_dens":: Not used.
If weight_function %in% c("logistic", "exponential", "threshold"):: a numeric vector with the switching variable i∈{1,...,d} in the first and the lag j∈{1,...,p} in the second element.
If weight_function == "mlogit":: a list of two elements:
- **The first element `$vars`:**: a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in $\lbrace 1,...,d \rbrace$.
- **The second element `$lags`:**: an integer in $\lbrace 1,...,p \rbrace$ specifying the number of lags to be used in the weight function.
If weight_function == "exogenous":: a size (nrow(data) - p x M) matrix containing the exogenous transition weights as [t, m] for time t and regime m. Each row needs to sum to one and only weakly positive values are allowed.
cond_dist: specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student", or "ind_skewed_t", where "ind_Student" the Student's t distribution with independent components, and "ind_skewed_t" is the skewed t distribution with independent components (see Hansen, 1994).
Returns
Does checks the argument weightfun_pars and throws an error if something is wrong; returns a corrected version of the argument if possible.