d: the number of time series in the system, i.e., the dimension
params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν), where (see exceptions below):
ϕm,0= the (d×1) intercept (or mean) vector of the mth regime.
φm=(vec(Am,1),...,vec(Am,p))(pd2×1).
if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))
$(Md(d + 1)/2 \times 1)$.
if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)(Md2×1).
α= the (a×1) vector containing the transition weight parameters (see below).
if cond_dist = "Gaussian"):: Omit ν from the parameter vector.
if cond_dist="Student":: ν2 is the single degrees of freedom parameter.
if cond_dist="ind_Student":: ν=(ν1,...,νd)(d×1), νi2.
if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)(2d×1), νi2 and λi∈(0,1).
$(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
weight_function="logistic":: α=(c,γ)
$(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
weight_function="mlogit":: α=(γ1,...,γM)((M−1)k×1), where γm(k×1), m=1,...,M−1 contains the multinomial logit-regression coefficients of the mth regime. Specifically, for switching variables with indices in I⊂{1,...,d}, and with p~∈{1,...,p} lags included, γm contains the coefficients for the vector zt−1=(1,z~min{I},...,z~max{I}), where z~i=(yit−1,...,yit−p~), i∈I. So k=1+∣I∣p~
where $|I|$ denotes the number of elements in $I$.
weight_function="exponential":: α=(c,γ)
$(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
weight_function="threshold":: α=(r1,...,rM−1)
$(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the threshold values.
weight_function="exogenous":: Omit α from the parameter vector.
identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM), where W(d×d) and λm(d×1), m=2,...,M, satisfy Ω1=WW′ and Ωm=WΛmW′, Λm=diag(λm1,...,λmd), λmi>0, m=2,...,M, i=1,...,d.
Above, ϕm,0 is the intercept parameter, Am,i denotes the ith coefficient matrix of the mth regime, Ωm denotes the positive definite error term covariance matrix of the mth regime, and Bm
is the invertible (d×d) impact matrix of the mth regime. νm is the degrees of freedom parameter of the mth regime. If parametrization=="mean", just replace each ϕm,0 with regimewise mean μm.
cond_dist: specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student", or "ind_skewed_t", where "ind_Student" the Student's t distribution with independent components, and "ind_skewed_t" is the skewed t distribution with independent components (see Hansen, 1994).
Returns
Returns...
If cond_dist == "Gaussian":: a numeric vector of length zero.
If cond_dist == "Student":: the degrees of freedom parameter.
If cond_dist == "ind_Student":: a numeric vector of length d containing the degrees of freedom parameters.
If cond_dist == "ind_skewed_t":: a numeric vector (ν1,...,νd,λ1,...,λd) of length 2d
containing the degrees of freedom and skewness parameters.