pick_regime function

Pick regime parameters

Pick regime parameters

pick_regime picks the regime parameters (ϕm,0,vec(Am,1),...,vec(Am,p),vech(Ωm))(\phi_{m,0},vec(A_{m,1}),...,vec(A_{m,p}),vech(\Omega_m))

pick_regime( p, M, d, params, m, cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t"), identification = c("reduced_form", "recursive", "heteroskedasticity", "non-Gaussianity") )

Arguments

  • p: the autoregressive order of the model

  • M: the number of regimes

  • d: the number of time series in the system, i.e., the dimension

  • params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν)\theta = (\phi_{1,0},...,\phi_{M,0},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu), where (see exceptions below):

    • ϕm,0=\phi_{m,0} = the (d×1)(d \times 1) intercept (or mean) vector of the mmth regime.
    • φm=(vec(Am,1),...,vec(Am,p))\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p})) (pd2×1)(pd^2 \times 1).
      • if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))\sigma = (vech(\Omega_1),...,vech(\Omega_M))

          $(Md(d + 1)/2 \times 1)$.
        
      • if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)\sigma = (vec(B_1),...,vec(B_M) (Md2×1)(Md^2 \times 1).

    • α=\alpha = the (a×1)(a\times 1) vector containing the transition weight parameters (see below).
      • if cond_dist = "Gaussian"):: Omit ν\nu from the parameter vector.
      • if cond_dist="Student":: ν2\nu \> 2 is the single degrees of freedom parameter.
      • if cond_dist="ind_Student":: ν=(ν1,...,νd)\nu = (\nu_1,...,\nu_d) (d×1)(d \times 1), νi2\nu_i \> 2.
      • if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d) (2d×1)(2d \times 1), νi2\nu_i \> 2 and λi(0,1)\lambda_i \in (0, 1).

    For models with...

    • weight_function="relative_dens":: α=(α1,...,αM1)\alpha = (\alpha_1,...,\alpha_{M-1})

        $(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
      
    • weight_function="logistic":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="mlogit":: α=(γ1,...,γM)\alpha = (\gamma_1,...,\gamma_M) ((M1)k×1)((M-1)k\times 1), where γm\gamma_m (k×1)(k\times 1), m=1,...,M1m=1,...,M-1 contains the multinomial logit-regression coefficients of the mmth regime. Specifically, for switching variables with indices in I{1,...,d}I\subset\lbrace 1,...,d\rbrace, and with p~{1,...,p}\tilde{p}\in\lbrace 1,...,p\rbrace lags included, γm\gamma_m contains the coefficients for the vector zt1=(1,z~min{I},...,z~max{I})z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where z~i=(yit1,...,yitp~)\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}}), iIi\in I. So k=1+Ip~k=1+|I|\tilde{p}

       where $|I|$ denotes the number of elements in $I$.
      
    • weight_function="exponential":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="threshold":: α=(r1,...,rM1)\alpha = (r_1,...,r_{M-1})

        $(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the threshold values.
      
    • weight_function="exogenous":: Omit α\alpha from the parameter vector.

    • identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM)\sigma = (vec(W),\lambda_2,...,\lambda_M), where WW (d×d)(d\times d) and λm\lambda_m (d×1)(d\times 1), m=2,...,Mm=2,...,M, satisfy Ω1=WW\Omega_1=WW' and Ωm=WΛmW\Omega_m=W\Lambda_mW', Λm=diag(λm1,...,λmd)\Lambda_m=diag(\lambda_{m1},...,\lambda_{md}), λmi>0\lambda_{mi}>0, m=2,...,Mm=2,...,M, i=1,...,di=1,...,d.

    Above, ϕm,0\phi_{m,0} is the intercept parameter, Am,iA_{m,i} denotes the iith coefficient matrix of the mmth regime, Ωm\Omega_{m} denotes the positive definite error term covariance matrix of the mmth regime, and BmB_m

    is the invertible (d×d)(d\times d) impact matrix of the mmth regime. νm\nu_m is the degrees of freedom parameter of the mmth regime. If parametrization=="mean", just replace each ϕm,0\phi_{m,0} with regimewise mean μm\mu_{m}.

  • m: which regime?

Returns

Returns the vector...

  • If identification == "non-Gaussianity" or cond_dist %in% c("ind_Student", "ind_skewed_t"):: (ϕm,0,vec(Am,1),...,vec(Am,p),vec(Bm))(\phi_{m,0},vec(A_{m,1}),...,vec(A_{m,p}),vec(B_m)).
  • If otherwise:: (ϕm,0,vec(Am,1),...,vec(Am,p),vech(Ωm))(\phi_{m,0},vec(A_{m,1}),...,vec(A_{m,p}),vech(\Omega_m)).

Note that neither weight parameters or distribution parameters are picked.

Details

Constrained models nor structural models are supported.

  • Maintainer: Savi Virolainen
  • License: GPL-3
  • Last published: 2025-02-27