pick_weightpars function

Pick transition weight parameters

Pick transition weight parameters

pick_weightpars picks the transition weight parameters from the given parameter vector.

pick_weightpars( p, M, d, params, weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold", "exogenous"), weightfun_pars = NULL, cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t") )

Arguments

  • p: the autoregressive order of the model

  • M: the number of regimes

  • d: the number of time series in the system, i.e., the dimension

  • params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν)\theta = (\phi_{1,0},...,\phi_{M,0},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu), where (see exceptions below):

    • ϕm,0=\phi_{m,0} = the (d×1)(d \times 1) intercept (or mean) vector of the mmth regime.
    • φm=(vec(Am,1),...,vec(Am,p))\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p})) (pd2×1)(pd^2 \times 1).
      • if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))\sigma = (vech(\Omega_1),...,vech(\Omega_M))

          $(Md(d + 1)/2 \times 1)$.
        
      • if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)\sigma = (vec(B_1),...,vec(B_M) (Md2×1)(Md^2 \times 1).

    • α=\alpha = the (a×1)(a\times 1) vector containing the transition weight parameters (see below).
      • if cond_dist = "Gaussian"):: Omit ν\nu from the parameter vector.
      • if cond_dist="Student":: ν2\nu \> 2 is the single degrees of freedom parameter.
      • if cond_dist="ind_Student":: ν=(ν1,...,νd)\nu = (\nu_1,...,\nu_d) (d×1)(d \times 1), νi2\nu_i \> 2.
      • if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d) (2d×1)(2d \times 1), νi2\nu_i \> 2 and λi(0,1)\lambda_i \in (0, 1).

    For models with...

    • weight_function="relative_dens":: α=(α1,...,αM1)\alpha = (\alpha_1,...,\alpha_{M-1})

        $(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
      
    • weight_function="logistic":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="mlogit":: α=(γ1,...,γM)\alpha = (\gamma_1,...,\gamma_M) ((M1)k×1)((M-1)k\times 1), where γm\gamma_m (k×1)(k\times 1), m=1,...,M1m=1,...,M-1 contains the multinomial logit-regression coefficients of the mmth regime. Specifically, for switching variables with indices in I{1,...,d}I\subset\lbrace 1,...,d\rbrace, and with p~{1,...,p}\tilde{p}\in\lbrace 1,...,p\rbrace lags included, γm\gamma_m contains the coefficients for the vector zt1=(1,z~min{I},...,z~max{I})z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where z~i=(yit1,...,yitp~)\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}}), iIi\in I. So k=1+Ip~k=1+|I|\tilde{p}

       where $|I|$ denotes the number of elements in $I$.
      
    • weight_function="exponential":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="threshold":: α=(r1,...,rM1)\alpha = (r_1,...,r_{M-1})

        $(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the threshold values.
      
    • weight_function="exogenous":: Omit α\alpha from the parameter vector.

    • identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM)\sigma = (vec(W),\lambda_2,...,\lambda_M), where WW (d×d)(d\times d) and λm\lambda_m (d×1)(d\times 1), m=2,...,Mm=2,...,M, satisfy Ω1=WW\Omega_1=WW' and Ωm=WΛmW\Omega_m=W\Lambda_mW', Λm=diag(λm1,...,λmd)\Lambda_m=diag(\lambda_{m1},...,\lambda_{md}), λmi>0\lambda_{mi}>0, m=2,...,Mm=2,...,M, i=1,...,di=1,...,d.

    Above, ϕm,0\phi_{m,0} is the intercept parameter, Am,iA_{m,i} denotes the iith coefficient matrix of the mmth regime, Ωm\Omega_{m} denotes the positive definite error term covariance matrix of the mmth regime, and BmB_m

    is the invertible (d×d)(d\times d) impact matrix of the mmth regime. νm\nu_m is the degrees of freedom parameter of the mmth regime. If parametrization=="mean", just replace each ϕm,0\phi_{m,0} with regimewise mean μm\mu_{m}.

  • weight_function: What type of transition weights αm,t\alpha_{m,t} should be used?

    • "relative_dens":: c("alpham,t=\n\\alpha_{m,t}=\n", "fracalphamfm,dp(yt1,...,ytp+1)sumn=1Malphanfn,dp(yt1,...,ytp+1) \\frac{\\alpha_mf_{m,dp}(y_{t-1},...,y_{t-p+1})}{\\sum_{n=1}^M\\alpha_nf_{n,dp}(y_{t-1},...,y_{t-p+1})}"), where αm(0,1)\alpha_m\in (0,1) are weight parameters that satisfy m=1Mαm=1\sum_{m=1}^M\alpha_m=1 and fm,dp()f_{m,dp}(\cdot) is the dpdp-dimensional stationary density of the mmth regime corresponding to pp

       consecutive observations. Available for Gaussian conditional distribution only.
      
    • "logistic":: M=2M=2, α1,t=1α2,t\alpha_{1,t}=1-\alpha_{2,t}, and α2,t=[1+exp{γ(yitjc)}]1\alpha_{2,t}=[1+\exp\lbrace -\gamma(y_{it-j}-c) \rbrace]^{-1}, where yitjy_{it-j} is the lag jj

       observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
      
    • "mlogit":: c("alpham,t=fracexplbracegammamzt1rbrace\n\\alpha_{m,t}=\\frac{\\exp\\lbrace \\gamma_m'z_{t-1} \\rbrace}\n", "sumn=1Mexplbracegammanzt1rbrace {\\sum_{n=1}^M\\exp\\lbrace \\gamma_n'z_{t-1} \\rbrace}"), where γm\gamma_m are coefficient vectors, γM=0\gamma_M=0, and zt1z_{t-1} (k×1)(k\times 1) is the vector containing a constant and the (lagged) switching variables.

    • "exponential":: M=2M=2, α1,t=1α2,t\alpha_{1,t}=1-\alpha_{2,t}, and α2,t=1exp{γ(yitjc)}\alpha_{2,t}=1-\exp\lbrace -\gamma(y_{it-j}-c) \rbrace, where yitjy_{it-j} is the lag jj

       observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
      
    • "threshold":: αm,t=1\alpha_{m,t} = 1 if rm1<yitjrmr_{m-1}<y_{it-j}\leq r_{m} and 00 otherwise, where r0<r1<<rM1<rM-\infty\equiv r_0<r_1<\cdots <r_{M-1}<r_M\equiv\infty are thresholds yitjy_{it-j} is the lag jj

       observation of the $i$th variable.
      
    • "exogenous":: Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.

    See the vignette for more details about the weight functions.

  • weightfun_pars: - If weight_function == "relative_dens":: Not used.

    • If weight_function %in% c("logistic", "exponential", "threshold"):: a numeric vector with the switching variable i{1,...,d}i\in\lbrace 1,...,d \rbrace in the first and the lag j{1,...,p}j\in\lbrace 1,...,p \rbrace in the second element.

    • If weight_function == "mlogit":: a list of two elements:

       - **The first element `$vars`:**: a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in $\lbrace 1,...,d \rbrace$.
       - **The second element `$lags`:**: an integer in $\lbrace 1,...,p \rbrace$ specifying the number of lags to be used in the weight function.
      
    • If weight_function == "exogenous":: a size (nrow(data) - p x M) matrix containing the exogenous transition weights as [t, m] for time tt and regime mm. Each row needs to sum to one and only weakly positive values are allowed.

  • cond_dist: specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student", or "ind_skewed_t", where "ind_Student" the Student's tt distribution with independent components, and "ind_skewed_t" is the skewed tt distribution with independent components (see Hansen, 1994).

Returns

  • If weight_function = "relative_dens":: Returns a length MM vector containing the transition weight parameters αm,m=1,...,M\alpha_{m}, m=1,...,M, including the non-parametrized αM\alpha_{M}.

  • weight_function="logistic":: Returns a length two vector (c,γ)(c,\gamma), where cRc\in\mathbb{R} is the location parameter and γ>0\gamma >0 is the scale parameter.

  • If weight_function = "mlogit":: Returns a length (M1)k(M-1)k vector (γ1,...,γM)(\gamma_1,...,\gamma_M), where γm\gamma_m (k×1)(k\times 1), m=1,...,M1m=1,...,M-1 (γM=0\gamma_M=0) contains the mlogit-regression coefficients of the mmth regime. Specifically, for switching variables with indices in J{1,...,d}J\subset\lbrace 1,...,d\rbrace, and with p~{1,...,p}\tilde{p}\in\lbrace 1,...,p\rbrace lags included, γm\gamma_m contains the coefficients for the vector zt1=(1,z~min{I},...,z~max{I})z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where z~i=(yj,t1,...,yj,tp~)\tilde{z}_{i} =(y_{j,t-1},...,y_{j,t-\tilde{p}}), iIi\in I. So k=1+Ip~k=1+|I|\tilde{p}

     where $|I|$ denotes the number of elements in $I$.
    
  • weight_function="exponential":: Returns a length two vector (c,γ)(c,\gamma), where cRc\in\mathbb{R} is the location parameter and γ>0\gamma >0 is the scale parameter.

  • weight_function="threshold":: Returns a length M1M-1 vector (r1,...,rM1)(r_1,...,r_{M-1}), where r1,...,rM1r_1,...,r_{M-1} are the threshold values.

  • weight_function="exogenous":: Returns numeric(0).

Warning

No argument checks!

  • Maintainer: Savi Virolainen
  • License: GPL-3
  • Last published: 2025-02-27