d: the number of time series in the system, i.e., the dimension
params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν), where (see exceptions below):
ϕm,0= the (d×1) intercept (or mean) vector of the mth regime.
φm=(vec(Am,1),...,vec(Am,p))(pd2×1).
if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))
$(Md(d + 1)/2 \times 1)$.
if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)(Md2×1).
α= the (a×1) vector containing the transition weight parameters (see below).
if cond_dist = "Gaussian"):: Omit ν from the parameter vector.
if cond_dist="Student":: ν2 is the single degrees of freedom parameter.
if cond_dist="ind_Student":: ν=(ν1,...,νd)(d×1), νi2.
if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)(2d×1), νi2 and λi∈(0,1).
$(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
weight_function="logistic":: α=(c,γ)
$(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
weight_function="mlogit":: α=(γ1,...,γM)((M−1)k×1), where γm(k×1), m=1,...,M−1 contains the multinomial logit-regression coefficients of the mth regime. Specifically, for switching variables with indices in I⊂{1,...,d}, and with p~∈{1,...,p} lags included, γm contains the coefficients for the vector zt−1=(1,z~min{I},...,z~max{I}), where z~i=(yit−1,...,yit−p~), i∈I. So k=1+∣I∣p~
where $|I|$ denotes the number of elements in $I$.
weight_function="exponential":: α=(c,γ)
$(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
weight_function="threshold":: α=(r1,...,rM−1)
$(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the threshold values.
weight_function="exogenous":: Omit α from the parameter vector.
identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM), where W(d×d) and λm(d×1), m=2,...,M, satisfy Ω1=WW′ and Ωm=WΛmW′, Λm=diag(λm1,...,λmd), λmi>0, m=2,...,M, i=1,...,d.
Above, ϕm,0 is the intercept parameter, Am,i denotes the ith coefficient matrix of the mth regime, Ωm denotes the positive definite error term covariance matrix of the mth regime, and Bm
is the invertible (d×d) impact matrix of the mth regime. νm is the degrees of freedom parameter of the mth regime. If parametrization=="mean", just replace each ϕm,0 with regimewise mean μm.
weight_function: What type of transition weights αm,t should be used?
"relative_dens":: c("alpham,t=\n", "fracalphamfm,dp(yt−1,...,yt−p+1)sumn=1Malphanfn,dp(yt−1,...,yt−p+1)"), where αm∈(0,1) are weight parameters that satisfy ∑m=1Mαm=1 and fm,dp(⋅) is the dp-dimensional stationary density of the mth regime corresponding to p
consecutive observations. Available for Gaussian conditional distribution only.
"logistic":: M=2, α1,t=1−α2,t, and α2,t=[1+exp{−γ(yit−j−c)}]−1, where yit−j is the lag j
observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
"mlogit":: c("alpham,t=fracexplbracegammam′zt−1rbrace\n", "sumn=1Mexplbracegamman′zt−1rbrace"), where γm are coefficient vectors, γM=0, and zt−1(k×1) is the vector containing a constant and the (lagged) switching variables.
"exponential":: M=2, α1,t=1−α2,t, and α2,t=1−exp{−γ(yit−j−c)}, where yit−j is the lag j
observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
"threshold":: αm,t=1 if rm−1<yit−j≤rm and 0 otherwise, where −∞≡r0<r1<⋯<rM−1<rM≡∞ are thresholds yit−j is the lag j
observation of the $i$th variable.
"exogenous":: Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.
See the vignette for more details about the weight functions.
weightfun_pars: - If weight_function == "relative_dens":: Not used.
If weight_function %in% c("logistic", "exponential", "threshold"):: a numeric vector with the switching variable i∈{1,...,d} in the first and the lag j∈{1,...,p} in the second element.
If weight_function == "mlogit":: a list of two elements:
- **The first element `$vars`:**: a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in $\lbrace 1,...,d \rbrace$.
- **The second element `$lags`:**: an integer in $\lbrace 1,...,p \rbrace$ specifying the number of lags to be used in the weight function.
If weight_function == "exogenous":: a size (nrow(data) - p x M) matrix containing the exogenous transition weights as [t, m] for time t and regime m. Each row needs to sum to one and only weakly positive values are allowed.
cond_dist: specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student", or "ind_skewed_t", where "ind_Student" the Student's t distribution with independent components, and "ind_skewed_t" is the skewed t distribution with independent components (see Hansen, 1994).
Returns
If weight_function = "relative_dens":: Returns a length M vector containing the transition weight parameters αm,m=1,...,M, including the non-parametrized αM.
weight_function="logistic":: Returns a length two vector (c,γ), where c∈R is the location parameter and γ>0 is the scale parameter.
If weight_function = "mlogit":: Returns a length (M−1)k vector (γ1,...,γM), where γm(k×1), m=1,...,M−1 (γM=0) contains the mlogit-regression coefficients of the mth regime. Specifically, for switching variables with indices in J⊂{1,...,d}, and with p~∈{1,...,p} lags included, γm contains the coefficients for the vector zt−1=(1,z~min{I},...,z~max{I}), where z~i=(yj,t−1,...,yj,t−p~), i∈I. So k=1+∣I∣p~
where $|I|$ denotes the number of elements in $I$.
weight_function="exponential":: Returns a length two vector (c,γ), where c∈R is the location parameter and γ>0 is the scale parameter.
weight_function="threshold":: Returns a length M−1 vector (r1,...,rM−1), where r1,...,rM−1 are the threshold values.