M: a positive integer specifying the number of regimes
weight_function: What type of transition weights αm,t should be used?
"relative_dens":: c("alpham,t=\n", "fracalphamfm,dp(yt−1,...,yt−p+1)sumn=1Malphanfn,dp(yt−1,...,yt−p+1)"), where αm∈(0,1) are weight parameters that satisfy ∑m=1Mαm=1 and fm,dp(⋅) is the dp-dimensional stationary density of the mth regime corresponding to p
consecutive observations. Available for Gaussian conditional distribution only.
"logistic":: M=2, α1,t=1−α2,t, and α2,t=[1+exp{−γ(yit−j−c)}]−1, where yit−j is the lag j
observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
"mlogit":: c("alpham,t=fracexplbracegammam′zt−1rbrace\n", "sumn=1Mexplbracegamman′zt−1rbrace"), where γm are coefficient vectors, γM=0, and zt−1(k×1) is the vector containing a constant and the (lagged) switching variables.
"exponential":: M=2, α1,t=1−α2,t, and α2,t=1−exp{−γ(yit−j−c)}, where yit−j is the lag j
observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
"threshold":: αm,t=1 if rm−1<yit−j≤rm and 0 otherwise, where −∞≡r0<r1<⋯<rM−1<rM≡∞ are thresholds yit−j is the lag j
observation of the $i$th variable.
"exogenous":: Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.
See the vignette for more details about the weight functions.
weightfun_pars: - If weight_function == "relative_dens":: Not used.
If weight_function %in% c("logistic", "exponential", "threshold"):: a numeric vector with the switching variable i∈{1,...,d} in the first and the lag j∈{1,...,p} in the second element.
If weight_function == "mlogit":: a list of two elements:
- **The first element `$vars`:**: a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in $\lbrace 1,...,d \rbrace$.
- **The second element `$lags`:**: an integer in $\lbrace 1,...,p \rbrace$ specifying the number of lags to be used in the weight function.
If weight_function == "exogenous":: a size (nrow(data) - p x M) matrix containing the exogenous transition weights as [t, m] for time t and regime m. Each row needs to sum to one and only weakly positive values are allowed.
AR_constraints: a size (Mpd2×q) constraint matrix C specifying linear constraints to the autoregressive parameters. The constraints are of the form (φ1,...,φM)=Cψ, where φm=(vec(Am,1),...,vec(Am,p))(pd2×1),m=1,...,M, contains the coefficient matrices and ψ(q×1) contains the related parameters. For example, to restrict the AR-parameters to be the identical across the regimes, set C=
[I:...:I]' (Mpd2×pd2) where I = diag(p*d^2).
mean_constraints: Restrict the mean parameters of some regimes to be identical? Provide a list of numeric vectors such that each numeric vector contains the regimes that should share the common mean parameters. For instance, if M=3, the argument list(1, 2:3) restricts the mean parameters of the second and third regime to be identical but the first regime has freely estimated (unconditional) mean. Ignore or set to NULL if mean parameters should not be restricted to be the same among any regimes. This constraint is available only for mean parametrized models; that is, when parametrization="mean".
weight_constraints: a list of two elements, R in the first element and r in the second element, specifying linear constraints on the transition weight parameters α. The constraints are of the form α=Rξ+r, where R is a known (a×l)
constraint matrix of full column rank (a is the dimension of α), r is a known (a×1) constant, and ξ is an unknown (l×1) parameter. Alternatively , set R=0 to constrain the weight parameters to the constant r (in this case, α is dropped from the constrained parameter vector).
weight_scale: For...
weight_function %in% c("relative_dens", "exogenous"):: not used.
weight_function %in% c("logistic", "exponential"):: length three vector with the mean (in the first element) and standard deviation (in the second element) of the normal distribution the location parameter is drawn from in random mutations. The third element is the standard deviation of the normal distribution from whose absolute value the location parameter is drawn from.
weight_function == "mlogit":: length two vector with the mean (in the first element) and standard deviation (in the second element) of the normal distribution the coefficients of the logit sub model's constant terms are drawn from in random mutations. The third element is the standard deviation of the normal distribution from which the non-constant regressors' coefficients are drawn from.
weight_function == "threshold":: a lenght two vector with the lower bound, in the first element and the upper bound, in the second element, of the uniform distribution threshold parameters are drawn from in random mutations.
Returns
Returns a numeric vector ...
If weight_function == "relative_dens":: a length M-1 vector (α1,...,αM−1).
If weight_function == "logistic":: a length two vector (c,γ), where c∈R is the location parameter and γ>0 is the scale parameter.
If weight_function == "mlogit":: a length ((M−1)k×1) vector (γ1,...,γM−1), where γm(k×1), m=1,...,M−1 contains the mlogit-regression coefficients of the mth regime. Specifically, for switching variables with indices in I⊂{1,...,d}, and with p~∈{1,...,p} lags included, γm contains the coefficients for the vector zt−1=(1,z~min{I},...,z~max{I}), where z~i=(yit−1,...,yit−p~), i∈I. So k=1+∣I∣p~
where $|I|$ denotes the number of elements in $I$.
If weight_function == "exponential":: a length two vector (c,γ), where c∈R is the location parameter and γ>0 is the scale parameter.
If weight_function == "threshold":: a length M−1 vector (r1,...,rM−1), where r1,...,rM−1 are the threshold values in an increasing order.
If weight_function == "exogenous":: of length zero.