sort_regimes function

Sort regimes in parameter vector according to transition weights into a decreasing order

Sort regimes in parameter vector according to transition weights into a decreasing order

sort_regimes sorts regimes in the parameter vector according to the transition weight parameters.

sort_regimes( p, M, d, params, weight_function = c("relative_dens", "logistic", "mlogit", "exponential", "threshold", "exogenous"), weightfun_pars = NULL, cond_dist = c("Gaussian", "Student", "ind_Student", "ind_skewed_t"), identification = c("reduced_form", "recursive", "heteroskedasticity", "non-Gaussianity"), B_constraints = NULL )

Arguments

  • p: a positive integer specifying the autoregressive order

  • M: a positive integer specifying the number of regimes

  • params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν)\theta = (\phi_{1,0},...,\phi_{M,0},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu), where (see exceptions below):

    • ϕm,0=\phi_{m,0} = the (d×1)(d \times 1) intercept (or mean) vector of the mmth regime.
    • φm=(vec(Am,1),...,vec(Am,p))\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p})) (pd2×1)(pd^2 \times 1).
      • if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))\sigma = (vech(\Omega_1),...,vech(\Omega_M))

          $(Md(d + 1)/2 \times 1)$.
        
      • if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)\sigma = (vec(B_1),...,vec(B_M) (Md2×1)(Md^2 \times 1).

    • α=\alpha = the (a×1)(a\times 1) vector containing the transition weight parameters (see below).
      • if cond_dist = "Gaussian"):: Omit ν\nu from the parameter vector.
      • if cond_dist="Student":: ν2\nu \> 2 is the single degrees of freedom parameter.
      • if cond_dist="ind_Student":: ν=(ν1,...,νd)\nu = (\nu_1,...,\nu_d) (d×1)(d \times 1), νi2\nu_i \> 2.
      • if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d) (2d×1)(2d \times 1), νi2\nu_i \> 2 and λi(0,1)\lambda_i \in (0, 1).

    For models with...

    • weight_function="relative_dens":: α=(α1,...,αM1)\alpha = (\alpha_1,...,\alpha_{M-1})

        $(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
      
    • weight_function="logistic":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="mlogit":: α=(γ1,...,γM)\alpha = (\gamma_1,...,\gamma_M) ((M1)k×1)((M-1)k\times 1), where γm\gamma_m (k×1)(k\times 1), m=1,...,M1m=1,...,M-1 contains the multinomial logit-regression coefficients of the mmth regime. Specifically, for switching variables with indices in I{1,...,d}I\subset\lbrace 1,...,d\rbrace, and with p~{1,...,p}\tilde{p}\in\lbrace 1,...,p\rbrace lags included, γm\gamma_m contains the coefficients for the vector zt1=(1,z~min{I},...,z~max{I})z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where z~i=(yit1,...,yitp~)\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}}), iIi\in I. So k=1+Ip~k=1+|I|\tilde{p}

       where $|I|$ denotes the number of elements in $I$.
      
    • weight_function="exponential":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="threshold":: α=(r1,...,rM1)\alpha = (r_1,...,r_{M-1})

        $(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the thresholds.
      
    • weight_function="exogenous":: Omit α\alpha from the parameter vector.

    • AR_constraints:: Replace φ1,...,φM\varphi_1,...,\varphi_M with ψ\psi as described in the argument AR_constraints.

    • mean_constraints:: Replace ϕ1,0,...,ϕM,0\phi_{1,0},...,\phi_{M,0} with (μ1,...,μg)(\mu_{1},...,\mu_{g}) where μi, (d×1)\mu_i, \ (d\times 1) is the mean parameter for group ii and gg is the number of groups.

    • weight_constraints:: If linear constraints are imposed, replace α\alpha with ξ\xi as described in the argument weigh_constraints. If weight functions parameters are imposed to be fixed values, simply drop α\alpha

       from the parameter vector.
      
    • identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM)\sigma = (vec(W),\lambda_2,...,\lambda_M), where WW (d×d)(d\times d) and λm\lambda_m (d×1)(d\times 1), m=2,...,Mm=2,...,M, satisfy Ω1=WW\Omega_1=WW' and Ωm=WΛmW\Omega_m=W\Lambda_mW', Λm=diag(λm1,...,λmd)\Lambda_m=diag(\lambda_{m1},...,\lambda_{md}), λmi>0\lambda_{mi}>0, m=2,...,Mm=2,...,M, i=1,...,di=1,...,d.

    • B_constraints:: For models identified by heteroskedasticity, replace vec(W)vec(W) with vec~(W)\tilde{vec}(W)

       that stacks the columns of the matrix $W$ in to vector so that the elements that are constrained to zero are not included. For models identified by non-Gaussianity, replace $vec(B_1),...,vec(B_M)$ with similarly with vectorized versions $B_m$ so that the elements that are constrained to zero are not included.
      

    Above, ϕm,0\phi_{m,0} is the intercept parameter, Am,iA_{m,i} denotes the iith coefficient matrix of the mmth regime, Ωm\Omega_{m} denotes the positive definite error term covariance matrix of the mmth regime, and BmB_m

    is the invertible (d×d)(d\times d) impact matrix of the mmth regime. νm\nu_m is the degrees of freedom parameter of the mmth regime. If parametrization=="mean", just replace each ϕm,0\phi_{m,0} with regimewise mean μm\mu_{m}. vec()vec() is vectorization operator that stacks columns of a given matrix into a vector. vech()vech() stacks columns of a given matrix from the principal diagonal downwards (including elements on the diagonal) into a vector. Bvec()Bvec()

    is a vectorization operator that stacks the columns of a given impact matrix BmB_m into a vector so that the elements that are constrained to zero by the argument B_constraints are excluded.

  • weight_function: What type of transition weights αm,t\alpha_{m,t} should be used?

    • "relative_dens":: c("alpham,t=\n\\alpha_{m,t}=\n", "fracalphamfm,dp(yt1,...,ytp+1)sumn=1Malphanfn,dp(yt1,...,ytp+1) \\frac{\\alpha_mf_{m,dp}(y_{t-1},...,y_{t-p+1})}{\\sum_{n=1}^M\\alpha_nf_{n,dp}(y_{t-1},...,y_{t-p+1})}"), where αm(0,1)\alpha_m\in (0,1) are weight parameters that satisfy m=1Mαm=1\sum_{m=1}^M\alpha_m=1 and fm,dp()f_{m,dp}(\cdot) is the dpdp-dimensional stationary density of the mmth regime corresponding to pp

       consecutive observations. Available for Gaussian conditional distribution only.
      
    • "logistic":: M=2M=2, α1,t=1α2,t\alpha_{1,t}=1-\alpha_{2,t}, and α2,t=[1+exp{γ(yitjc)}]1\alpha_{2,t}=[1+\exp\lbrace -\gamma(y_{it-j}-c) \rbrace]^{-1}, where yitjy_{it-j} is the lag jj

       observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
      
    • "mlogit":: c("alpham,t=fracexplbracegammamzt1rbrace\n\\alpha_{m,t}=\\frac{\\exp\\lbrace \\gamma_m'z_{t-1} \\rbrace}\n", "sumn=1Mexplbracegammanzt1rbrace {\\sum_{n=1}^M\\exp\\lbrace \\gamma_n'z_{t-1} \\rbrace}"), where γm\gamma_m are coefficient vectors, γM=0\gamma_M=0, and zt1z_{t-1} (k×1)(k\times 1) is the vector containing a constant and the (lagged) switching variables.

    • "exponential":: M=2M=2, α1,t=1α2,t\alpha_{1,t}=1-\alpha_{2,t}, and α2,t=1exp{γ(yitjc)}\alpha_{2,t}=1-\exp\lbrace -\gamma(y_{it-j}-c) \rbrace, where yitjy_{it-j} is the lag jj

       observation of the $i$th variable, $c$ is a location parameter, and $\gamma > 0$ is a scale parameter.
      
    • "threshold":: αm,t=1\alpha_{m,t} = 1 if rm1<yitjrmr_{m-1}<y_{it-j}\leq r_{m} and 00 otherwise, where r0<r1<<rM1<rM-\infty\equiv r_0<r_1<\cdots <r_{M-1}<r_M\equiv\infty are thresholds yitjy_{it-j} is the lag jj

       observation of the $i$th variable.
      
    • "exogenous":: Exogenous nonrandom transition weights, specify the weight series in weightfun_pars.

    See the vignette for more details about the weight functions.

  • weightfun_pars: - If weight_function == "relative_dens":: Not used.

    • If weight_function %in% c("logistic", "exponential", "threshold"):: a numeric vector with the switching variable i{1,...,d}i\in\lbrace 1,...,d \rbrace in the first and the lag j{1,...,p}j\in\lbrace 1,...,p \rbrace in the second element.

    • If weight_function == "mlogit":: a list of two elements:

       - **The first element `$vars`:**: a numeric vector containing the variables that should used as switching variables in the weight function in an increasing order, i.e., a vector with unique elements in $\lbrace 1,...,d \rbrace$.
       - **The second element `$lags`:**: an integer in $\lbrace 1,...,p \rbrace$ specifying the number of lags to be used in the weight function.
      
    • If weight_function == "exogenous":: a size (nrow(data) - p x M) matrix containing the exogenous transition weights as [t, m] for time tt and regime mm. Each row needs to sum to one and only weakly positive values are allowed.

  • cond_dist: specifies the conditional distribution of the model as "Gaussian", "Student", "ind_Student", or "ind_skewed_t", where "ind_Student" the Student's tt distribution with independent components, and "ind_skewed_t" is the skewed tt distribution with independent components (see Hansen, 1994).

  • identification: is it reduced form model or an identified structural model; if the latter, how is it identified (see the vignette or the references for details)?

    • "reduced_form":: Reduced form model.
    • "recursive":: The usual lower-triangular recursive identification of the shocks via their impact responses.
    • "heteroskedasticity":: Identification by conditional heteroskedasticity, which imposes constant relative impact responses for each shock.
    • "non-Gaussianity":: Identification by non-Gaussianity; requires mutually independent non-Gaussian shocks, thus, currently available only with the conditional distribution "ind_Student".
  • B_constraints: a (d×d)(d \times d) matrix with its entries imposing constraints on the impact matrix BtB_t: NA indicating that the element is unconstrained, a positive value indicating strict positive sign constraint, a negative value indicating strict negative sign constraint, and zero indicating that the element is constrained to zero. Currently only available for models with identification="heteroskedasticity" or "non-Gaussianity" due to the (in)availability of appropriate parametrizations that allow such constraints to be imposed.

Returns

Returns sorted parameter vector of the form described for the argument params, with the regimes sorted so that...

  • If weight_function == "relative_dens":: α1>...>αM\alpha_{1}>...>\alpha_{M}.
  • If weight_function == "logistic":: Nothing to sort, so returns the original parameter vector given in param.
  • If weight_function == "mlogit":: Does not currently sort, so returns the original parameter vector given in param.
  • If weight_function == "exponential":: Nothing to sort, so returns the original parameter vector given in param.
  • If weight_function == "threshold":: The increasing ordering of the thresholds is imposed in the parameter space, so nothing to sort and thereby returns the original parameter vector given in param.
  • If weight_function == "exogenous":: Does not sort but returns the original parameter vector.

Details

Constrained parameter vectors are not supported (except B_constraints for structural models identified by heteroskedasticity).

  • Maintainer: Savi Virolainen
  • License: GPL-3
  • Last published: 2025-02-27