stab_conds_satisfied function

Check the stability condition for each of the regimes

Check the stability condition for each of the regimes

stab_conds_satisfied checks whether the stability condition is satisfied for each of the regimes.

stab_conds_satisfied(p, M, d, params, all_boldA = NULL, tolerance = 0.001)

Arguments

  • p: the autoregressive order of the model

  • M: the number of regimes

  • d: the number of time series in the system, i.e., the dimension

  • params: a real valued vector specifying the parameter values. Should have the form θ=(ϕ1,0,...,ϕM,0,φ1,...,φM,σ,α,ν)\theta = (\phi_{1,0},...,\phi_{M,0},\varphi_1,...,\varphi_M,\sigma,\alpha,\nu), where (see exceptions below):

    • ϕm,0=\phi_{m,0} = the (d×1)(d \times 1) intercept (or mean) vector of the mmth regime.
    • φm=(vec(Am,1),...,vec(Am,p))\varphi_m = (vec(A_{m,1}),...,vec(A_{m,p})) (pd2×1)(pd^2 \times 1).
      • if cond_dist="Gaussian" or "Student":: σ=(vech(Ω1),...,vech(ΩM))\sigma = (vech(\Omega_1),...,vech(\Omega_M))

          $(Md(d + 1)/2 \times 1)$.
        
      • if cond_dist="ind_Student" or "ind_skewed_t":: σ=(vec(B1),...,vec(BM)\sigma = (vec(B_1),...,vec(B_M) (Md2×1)(Md^2 \times 1).

    • α=\alpha = the (a×1)(a\times 1) vector containing the transition weight parameters (see below).
      • if cond_dist = "Gaussian"):: Omit ν\nu from the parameter vector.
      • if cond_dist="Student":: ν2\nu \> 2 is the single degrees of freedom parameter.
      • if cond_dist="ind_Student":: ν=(ν1,...,νd)\nu = (\nu_1,...,\nu_d) (d×1)(d \times 1), νi2\nu_i \> 2.
      • if cond_dist="ind_skewed_t":: ν=(ν1,...,νd,λ1,...,λd)\nu = (\nu_1,...,\nu_d,\lambda_1,...,\lambda_d) (2d×1)(2d \times 1), νi2\nu_i \> 2 and λi(0,1)\lambda_i \in (0, 1).

    For models with...

    • weight_function="relative_dens":: α=(α1,...,αM1)\alpha = (\alpha_1,...,\alpha_{M-1})

        $(M - 1 \times 1)$, where $\alpha_m$ $(1\times 1), m=1,...,M-1$ are the transition weight parameters.
      
    • weight_function="logistic":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="mlogit":: α=(γ1,...,γM)\alpha = (\gamma_1,...,\gamma_M) ((M1)k×1)((M-1)k\times 1), where γm\gamma_m (k×1)(k\times 1), m=1,...,M1m=1,...,M-1 contains the multinomial logit-regression coefficients of the mmth regime. Specifically, for switching variables with indices in I{1,...,d}I\subset\lbrace 1,...,d\rbrace, and with p~{1,...,p}\tilde{p}\in\lbrace 1,...,p\rbrace lags included, γm\gamma_m contains the coefficients for the vector zt1=(1,z~min{I},...,z~max{I})z_{t-1} = (1,\tilde{z}_{\min\lbrace I\rbrace},...,\tilde{z}_{\max\lbrace I\rbrace}), where z~i=(yit1,...,yitp~)\tilde{z}_{i} =(y_{it-1},...,y_{it-\tilde{p}}), iIi\in I. So k=1+Ip~k=1+|I|\tilde{p}

       where $|I|$ denotes the number of elements in $I$.
      
    • weight_function="exponential":: α=(c,γ)\alpha = (c,\gamma)

        $(2 \times 1)$, where $c\in\mathbb{R}$ is the location parameter and $\gamma >0$ is the scale parameter.
      
    • weight_function="threshold":: α=(r1,...,rM1)\alpha = (r_1,...,r_{M-1})

        $(M-1 \times 1)$, where $r_1,...,r_{M-1}$ are the threshold values.
      
    • weight_function="exogenous":: Omit α\alpha from the parameter vector.

    • identification="heteroskedasticity":: σ=(vec(W),λ2,...,λM)\sigma = (vec(W),\lambda_2,...,\lambda_M), where WW (d×d)(d\times d) and λm\lambda_m (d×1)(d\times 1), m=2,...,Mm=2,...,M, satisfy Ω1=WW\Omega_1=WW' and Ωm=WΛmW\Omega_m=W\Lambda_mW', Λm=diag(λm1,...,λmd)\Lambda_m=diag(\lambda_{m1},...,\lambda_{md}), λmi>0\lambda_{mi}>0, m=2,...,Mm=2,...,M, i=1,...,di=1,...,d.

    Above, ϕm,0\phi_{m,0} is the intercept parameter, Am,iA_{m,i} denotes the iith coefficient matrix of the mmth regime, Ωm\Omega_{m} denotes the positive definite error term covariance matrix of the mmth regime, and BmB_m

    is the invertible (d×d)(d\times d) impact matrix of the mmth regime. νm\nu_m is the degrees of freedom parameter of the mmth regime. If parametrization=="mean", just replace each ϕm,0\phi_{m,0} with regimewise mean μm\mu_{m}.

  • all_boldA: 3D array containing the ((dp)x(dp))((dp)x(dp)) "bold A" (companion form) matrices of each regime, obtained from form_boldA. Will be computed if not given.

  • tolerance: Returns FALSE if modulus of any eigenvalue of "bold A" is larger or equal to 1-tolerance.

Returns

Returns TRUE if the stability condition is satisfied for all regimes and FALSE if not. According to the argument tolerance, stab_conds_satisfied may return FALSE when the parameter vector satisfies the stability conditions but is very close to the boundary (this is used to ensure numerical stability in the estimation of the model parameters).

Details

Does not support constrained parameter vectors.

Warning

No argument checks!

References

  • Lütkepohl H. 2005. New Introduction to Multiple Time Series Analysis, Springer.
  • Maintainer: Savi Virolainen
  • License: GPL-3
  • Last published: 2025-02-27