This function calculates Best Linear Unbiased Predictors (BLUPS) and associated standard errors based on a set of mega environments.
## S3 method for class 'megaEnv'predict( object,..., trials = names(object$TD), useYear =FALSE, engine = c("lme4","asreml"))
Arguments
object: An object of class megaEnv.
...: Further parameters passed to either asreml or lmer.
trials: A character string specifying the trials to be analyzed. If not supplied, all trials are used in the analysis.
useYear: Should year be used for modeling (as years within trials). If TRUE, TD should contain a column "year".
engine: A character string specifying the engine used for modeling.
Returns
A list consisting of two data.frames, predictedValue
containing BLUPs per genotype per mega environment and standardError
containing standard errors for those BLUPs.
Examples
## Compute mega environments for TDMaize.geMegaEnv <- gxeMegaEnv(TD = TDMaize, trait ="yld")## Compute BLUPS and standard errors for those mega environments.megaEnvPred <- predict(geMegaEnv)head(megaEnvPred$predictedValue)head(megaEnvPred$standardError)
See Also
Other mega environments: gxeMegaEnv(), plot.megaEnv()