Non-parametric boostrap of StepMix estimator. Fit the estimator on X,Y then fit n_repetitions on resampled datasets. Repetition parameters are aligned with the class order of the main estimator.
## S3 method for class 'stepmix.stepmix.StepMix'bootstrap(x, X =NULL, y =NULL, n_repetitions =10,...)bootstrap(x,...)
Arguments
x: An object created with the fit function
X: The X matrix or data.frame for the measurement part of the model
y: The Y matrix or data.frame for the structural part of the model
n_repetitions: The number of bootsrap sample
...: For future options. This option is actually unused.
Details
This methods returns a list with bootstrap samples (samples) and the log-likelihood (rep_stats).
Returns
A list containing bootstrap samples of the parameters.
References
Bolck, A., Croon, M., and Hagenaars, J. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political analysis, 12(1): 3-27, 2004.
Vermunt, J. K. Latent class modeling with covariates: Two improved three-step approaches. Political analysis, 18 (4):450-469, 2010.
Bakk, Z., Tekle, F. B., and Vermunt, J. K. Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43(1):272-311, 2013.
Bakk, Z. and Kuha, J. Two-step estimation of models between latent classes and external variables. Psychometrika, 83(4):871-892, 2018
Author(s)
Éric Lacourse, Roxane de la Sablonnière, Charles-Édouard Giguère, Sacha Morin, Robin Legault, Félix Laliberté, Zsusza Bakk