Predict the membership (probabilities) using the fit of the stepmix python package.
Predict the membership (probabilities) using the fit of the stepmix python package.
Predict the membership (probabilities) of a mixture using a stepmix object in python using X and optionally Y to the object.
## S3 method for class 'stepmix.stepmix.StepMix'predict(object, X =NULL, Y =NULL,...)## S3 method for class 'stepmix.stepmix.StepMix'predict_proba(object, X =NULL, Y =NULL,...)
Arguments
object: An object created with the fit function.
X: The X matrix or data.frame for the measurement part of the model
Y: The Y matrix or data.frame for the structural part of the model
...: not used in this function
Returns
A vector containing the membership (probabilities) of the mixture.
References
Bolck, A., Croon, M., and Hagenaars, J. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political analysis, 12(1): 3-27, 2004.
Vermunt, J. K. Latent class modeling with covariates: Two improved three-step approaches. Political analysis, 18 (4):450-469, 2010.
Bakk, Z., Tekle, F. B., and Vermunt, J. K. Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43(1):272-311, 2013.
Bakk, Z. and Kuha, J. Two-step estimation of models between latent classes and external variables. Psychometrika, 83(4):871-892, 2018
Author(s)
Éric Lacourse, Roxane de la Sablonnière, Charles-Édouard Giguère, Sacha Morin, Robin Legault, Zsusza Bakk