predict function

Predict the membership (probabilities) using the fit of the stepmix python package.

Predict the membership (probabilities) using the fit of the stepmix python package.

Predict the membership (probabilities) of a mixture using a stepmix object in python using X and optionally Y to the object.

## S3 method for class 'stepmix.stepmix.StepMix' predict(object, X = NULL, Y = NULL, ...) ## S3 method for class 'stepmix.stepmix.StepMix' predict_proba(object, X = NULL, Y = NULL, ...)

Arguments

  • object: An object created with the fit function.
  • X: The X matrix or data.frame for the measurement part of the model
  • Y: The Y matrix or data.frame for the structural part of the model
  • ...: not used in this function

Returns

A vector containing the membership (probabilities) of the mixture.

References

Bolck, A., Croon, M., and Hagenaars, J. Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political analysis, 12(1): 3-27, 2004.

Vermunt, J. K. Latent class modeling with covariates: Two improved three-step approaches. Political analysis, 18 (4):450-469, 2010.

Bakk, Z., Tekle, F. B., and Vermunt, J. K. Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43(1):272-311, 2013.

Bakk, Z. and Kuha, J. Two-step estimation of models between latent classes and external variables. Psychometrika, 83(4):871-892, 2018

Author(s)

Éric Lacourse, Roxane de la Sablonnière, Charles-Édouard Giguère, Sacha Morin, Robin Legault, Zsusza Bakk

Examples

## Not run: if (reticulate::py_module_available("stepmix")) { require(stepmixr) model1 <- stepmix(n_components = 3, n_steps = 2, measurement = "continuous", progress_bar = 0) X <- iris[c(1:10, 51:60, 101:110), 1:4] fit1 <- fit(model1, X) pr1 <- predict(fit1, X) } ## End(Not run)