Optimizes an empirical (perhaps non-convex) loss function over batches of sample data. Compared to function/class 'adaQN', this version lets the user do all the calculations from the outside, only interacting with the object by means of a function that returns a request type and is fed the required calculation through methods 'update_gradient' and 'update_function'.
Order in which requests are made:
========== loop ===========
calc_grad
... (repeat calc_grad)
if max_incr > 0:
* calc_fun_val_batch
if 'use_grad_diff':
* calc_grad_big_batch (skipped if below max_incr)
===========================
After running this function, apply run_adaQN_free to it to get the first requested piece of information.
mem_size: Number of correction pairs to store for approximation of Hessian-vector products.
fisher_size: Number of gradients to store for calculation of the empirical Fisher product with gradients. If passing NULL, will force use_grad_diff to TRUE.
bfgs_upd_freq: Number of iterations (batches) after which to generate a BFGS correction pair.
max_incr: Maximum ratio of function values in the validation set under the average values of x during current epoch vs. previous epoch. If the ratio is above this threshold, the BFGS and Fisher memories will be reset, and x values reverted to their previous average. Pass NULL for no function-increase checking.
min_curvature: Minimum value of (s * y) / (s * s) in order to accept a correction pair. Pass NULL for no minimum.
scal_reg: Regularization parameter to use in the denominator for AdaGrad and RMSProp scaling.
rmsprop_weight: If not NULL, will use RMSProp formula instead of AdaGrad for approximated inverse-Hessian initialization.
y_reg: Regularizer for 'y' vector (gets added y_reg * s). Pass NULL for no regularization.
use_grad_diff: Whether to create the correction pairs using differences between gradients instead of Fisher matrix. These gradients are calculated on a larger batch than the regular ones (given by batch_size * bfgs_upd_freq). If TRUE, empirical Fisher matrix will not be used.
check_nan: Whether to check for variables becoming NaN after each iteration, and reverting the step if they do (will also reset BFGS and Fisher memory).
nthreads: Number of parallel threads to use. If set to -1, will determine the number of available threads and use all of them. Note however that not all the computations can be parallelized, and the BLAS backend might use a different number of threads.
Returns
An adaQN_free object, which can be used through functions update_gradient, update_fun, and run_adaQN_free
Examples
### Example optimizing Rosenbrock 2D function### Note that this example is not stochastic, as the### function is not evaluated in expectation based on### batches of data, but rather it has a given absolute### form that never varies.library(stochQN)fr <-function(x){## Rosenbrock Banana function x1 <- x[1] x2 <- x[2]100*(x2 - x1 * x1)^2+(1- x1)^2}grr <-function(x){## Gradient of 'fr' x1 <- x[1] x2 <- x[2] c(-400* x1 *(x2 - x1 * x1)-2*(1- x1),200*(x2 - x1 * x1))}### Initial values of xx_opt = as.numeric(c(0,2))cat(sprintf("Initial values of x: [%.3f, %.3f]\n", x_opt[1], x_opt[2]))### Will use constant step size throughout### (not recommended)step_size =1e-2### Initialize the optimizeroptimizer = adaQN_free()### Keep track of the iteration numbercurr_iter <-0### Run a loop for many iterations### (Note that some iterations might require more### than 1 calculation request)for(i in1:200){ req <- run_adaQN_free(optimizer, x_opt, step_size)if(req$task =="calc_grad"){ update_gradient(optimizer, grr(req$requested_on))}elseif(req$task =="calc_fun_val_batch"){ update_fun(optimizer, fr(req$requested_on))}### Track progress every 10 iterationsif(req$info$iteration_number > curr_iter){ curr_iter <- req$info$iteration_number
}if((curr_iter %%10)==0){ cat(sprintf("Iteration %3d - Current function value: %.3f\n", req$info$iteration_number, fr(x_opt)))}}cat(sprintf("Current values of x: [%.3f, %.3f]\n", x_opt[1], x_opt[2]))
References
Keskar, N.S. and Berahas, A.S., 2016, September. "adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs." In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 1-16). Springer, Cham.
Wright, S. and Nocedal, J., 1999. "Numerical optimization." (ch 7) Springer Science, 35(67-68), p.7.