Sufficient Forecasting using Factor Models
Estimate the number of common factors K
Conformal inference of the sufficient forecasting
Directional regression for sufficient forecasting
Principal component regression for sufficient forecasting
Select a method from PC, SIR and DR to do point prediction
Sliced inverse regression for sufficient forecasting
sufficientForecasting: Sufficient Forecasting using Factor Models
The sufficient forecasting (SF) method is implemented by this package for a single time series forecasting using many predictors and a possibly nonlinear forecasting function. Assuming that the predictors are driven by some latent factors, the SF first conducts factor analysis and then performs sufficient dimension reduction on the estimated factors to derive predictive indices for forecasting. The package implements several dimension reduction approaches, including principal components (PC), sliced inverse regression (SIR), and directional regression (DR). Methods for dimension reduction are as described in: Fan, J., Xue, L. and Yao, J. (2017) <doi:10.1016/j.jeconom.2017.08.009>, Luo, W., Xue, L., Yao, J. and Yu, X. (2022) <doi:10.1093/biomet/asab037> and Yu, X., Yao, J. and Xue, L. (2022) <doi:10.1080/07350015.2020.1813589>.
Useful links