Fit predictive model using outcome of supervised principal components
Fit predictive model using outcome of supervised principal components, via either coxph (for surival data) or lm (for regression data)
superpc.fit.to.outcome(fit, data.test, score, competing.predictors=NULL, print=TRUE, iter.max=5)
fit
: Object returned by superpc.train.data.test
: Data object for prediction. Same form as data object documented in superpc.train.score
: Supervised principal component score, from superpc.predict.competing.predictors
: Optional - a list of competing predictors to be included in the model.print
: Should a summary of the fit be printed? Default TRUE.iter.max
: Max number of iterations used in predictive model fit. Default 5. Currently only relevant for Cox PH model.Returns summary of coxph or lm fit.
Maintainer: "Jean-Eudes Dazard, Ph.D."
set.seed(332) #generate some data x <- matrix(rnorm(50*30), ncol=30) y <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) ytest <- 10 + svd(x[1:50,])$v[,1] + .1*rnorm(30) censoring.status <- sample(c(rep(1,20), rep(0,10))) censoring.status.test <- sample(c(rep(1,20), rep(0,10))) featurenames <- paste("feature", as.character(1:50), sep="") data <- list(x=x, y=y, censoring.status=censoring.status, featurenames=featurenames) data.test <- list(x=x, y=ytest, censoring.status=censoring.status.test, featurenames=featurenames) a <- superpc.train(data, type="survival") fit <- superpc.predict(a, data, data.test, threshold=1.0, n.components=1, prediction.type="continuous") superpc.fit.to.outcome(a, data, fit$v.pred)